Abstract

Background

Transcription factor-based biosensors are useful tools for the detection of metabolites and industrially valuable molecules, and present many potential applications in biotechnology and biomedicine. However, the most common approach to develop biosensors relies on employing a limited set of naturally occurring allosteric transcription factors (aTFs). Therefore, altering the ligand specificity of aTFs towards the detection of new effectors is an important goal.

Results

Here, the PcaV repressor, a member of the MarR aTF family, was used to develop a biosensor for the detection of hydroxyl-substituted benzoic acids, including protocatechuic acid (PCA). The PCA biosensor was further subjected to directed evolution to alter its ligand specificity towards vanillin and other closely related aromatic aldehydes, to generate the Van2 biosensor. Ligand recognition of Van2 was explored in vitro using a range of biochemical and biophysical analyses, and extensive in vivo genetic-phenotypic analysis was performed to determine the role of each amino acid change upon biosensor performance.

Conclusions

This is the first study to report directed evolution of a member of the MarR aTF family, and demonstrates the plasticity of the PCA biosensor by altering its ligand specificity to generate a biosensor for aromatic aldehydes.

Details

Title
Directed evolution of the PcaV allosteric transcription factor to generate a biosensor for aromatic aldehydes
Author
Machado, Leopoldo F M; Currin, Andrew; Dixon, Neil
Pages
1-15
Section
Research
Publication year
2019
Publication date
2019
Publisher
BioMed Central
e-ISSN
17541611
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2328254839
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.