Abstract

Background

Neuraminidase (NA) is a sialidase present, among various locations, in the envelope/membrane of some bacteria/viruses (e.g., influenza virus), and is involved in infectiveness and/or dispersion. The administration of NA within the brain lateral ventricle represents a model of acute sterile inflammation. The relevance of the Toll-like receptors TLR2 and TLR4 (particularly those in microglial cells) in such process was investigated.

Methods

Mouse strains deficient in either TLR2 (TLR2-/-) or TLR4 (TLR4-/-) were used. NA was injected in the lateral ventricle, and the inflammatory reaction was studied by immunohistochemistry (IBA1 and IL-1β) and qPCR (cytokine response). Also, microglia was isolated from those strains and in vitro stimulated with NA, or with TLR2/TLR4 agonists as positive controls (P3C and LPS respectively). The relevance of the sialidase activity of NA was investigated by stimulating microglia with heat-inactivated NA, or with native NA in the presence of sialidase inhibitors (oseltamivir phosphate and N-acetyl-2,3-dehydro-2-deoxyneuraminic acid).

Results

In septofimbria and hypothalamus, IBA1-positive and IL-1β-positive cell counts increased after NA injection in wild type (WT) mice. In TLR4-/- mice, such increases were largely abolished, while were only slightly diminished in TLR2-/- mice. Similarly, the NA-induced expression of IL-1β, TNFα, and IL-6 was completely blocked in TLR4-/- mice, and only partially reduced in TLR2-/- mice. In isolated cultured microglia, NA induced a cytokine response (IL-1β, TNFα, and IL-6) in WT microglia, but was unable to do so in TLR4-/- microglia; TLR2 deficiency partially affected the NA-induced microglial response. When WT microglia was exposed in vitro to heat-inactivated NA or to native NA along with sialidase inhibitors, the NA-induced microglia activation was almost completely abrogated.

Conclusions

NA is able to directly activate microglial cells, and it does so mostly acting through the TLR4 receptor, while TLR2 has a secondary role. Accordingly, the inflammatory reaction induced by NA in vivo is partially dependent on TLR2, while TLR4 plays a crucial role. Also, the sialidase activity of NA is critical for microglial activation. These results highlight the relevance of microbial NA in the neuroinflammation provoked by NA-bearing pathogens and the possibility of targeting its sialidase activity to ameliorate its impact.

Details

Title
Microglial activation by microbial neuraminidase through TLR2 and TLR4 receptors
Author
María del Mar Fernández-Arjona; Grondona, Jesús M; Fernández-Llebrez, Pedro; López-Ávalos, María Dolores
Pages
1-14
Section
Research
Publication year
2019
Publication date
2019
Publisher
BioMed Central
e-ISSN
1742-2094
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2328455794
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.