Abstract

Background

Switchgrass (Panicum virgatum L.), a North American prairie grassland species, is a potential lignocellulosic biofuel feedstock owing to its wide adaptability and biomass production. Production and genetic manipulation of switchgrass should be useful to improve its biomass composition and production for bioenergy applications. The goal of this project was to develop a high-throughput stable switchgrass transformation method using Agrobacterium tumefaciens with subsequent plant regeneration.

Results

Regenerable embryogenic cell suspension cultures were established from friable type II callus-derived inflorescences using two genotypes selected from the synthetic switchgrass variety ‘Performer’ tissue culture lines 32 and 605. The cell suspension cultures were composed of a heterogeneous fine mixture culture of single cells and aggregates. Agrobacterium tumefaciens strain GV3101 was optimum to transfer into cells the pANIC-10A vector with a hygromycin-selectable marker gene and a pporRFP orange fluorescent protein marker gene at an 85% transformation efficiency. Liquid cultures gave rise to embryogenic callus and then shoots, of which up to 94% formed roots. The resulting transgenic plants were phenotypically indistinguishable from the non-transgenic parent lines.

Conclusion

The new cell suspension-based protocol enables high-throughput Agrobacterium-mediated transformation and regeneration of switchgrass in which plants are recovered within 6–7 months from culture establishment.

Details

Title
Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass (Panicum virgatum L.)
Author
Ondzighi-Assoume, Christine A; Willis, Jonathan D; Ouma, Wilson K; Allen, Sara M; King, Zachary; Parrott, Wayne A; Liu, Wusheng; Burris, Jason N; Lenaghan, Scott C; Stewart, C Neal, Jr
Pages
1-14
Section
Research
Publication year
2019
Publication date
2019
Publisher
BioMed Central
e-ISSN
1754-6834
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2328590448
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.