Abstract
Background
Oilseed rape is an excellent candidate for phytoremediation of cadmium (Cd) contaminated soils given its advantages of high biomass, fast growth, moderate metal accumulation, ease of harvesting, and metal tolerance, but the cadmium response pathways in this species (Brassica napus) have yet to be fully elucidated. A combined analysis of miRNA and mRNA expression to infer Cd-induced regulation has not been reported in B. napus.
Results
We characterized concurrent changes in miRNA and mRNA profiles in the roots and shoots of B. napus seedlings after 10 days of 10 mg/L Cd2+ treatment. Cd treatment significantly affected the expression of 22 miRNAs belonging to 11 families in the root and 29 miRNAs belonging to 14 miRNA families in the shoot. Five miRNA families (MIR395, MIR397, MIR398, MIR408 and MIR858) and three novel miRNAs were differentially expressed in both tissues. A total of 399 differentially expressed genes (DEGs) in the root and 389 DEGs in the shoot were identified, with very little overlap between tissue types. Eight anti-regulation miRNA-mRNA interaction pairs in the root and eight in the shoot were identified in response to Cd and were involved in key plant stress response pathways: for example, four genes targeted by miR398 were involved in a pathway for detoxification of superoxide radicals. Cd stress significantly impacted the photosynthetic pathway. Transcription factor activation, antioxidant response pathways and secondary metabolic processes such as glutathione (GSH) and phenylpropanoid metabolism were identified as major components for Cd-induced response in both roots and shoots.
Conclusions
Combined miRNA and mRNA profiling revealed miRNAs, genes and pathways involved in Cd response which are potentially critical for adaptation to Cd stress in B. napus. Close crosstalk between several Cd-induced miRNAs and mRNAs was identified, shedding light on possible mechanisms for response to Cd stress in underground and aboveground tissues in B. napus. The pathways, genes, and miRNAs identified here will be valuable targets for future improvement of cadmium tolerance in B. napus.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer