This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Nonalcoholic fatty liver disease (NAFLD), which characterized by the accumulation of lipid in liver parenchyma without obvious alcohol consumption, is a clinical syndrome of chronic liver disease scoping from simple steatosis, nonalcoholic steatohepatitis (NASH) to cirrhosis [1]. Nowadays, NAFLD has become the most common liver disease affecting adults and children in the world, with 52.34 per 1000 person-years overall global prevalence rate [2, 3]. It is reported that hepatocellular carcinoma is closely associated with NAFLD, leading to a higher mortality rate of NAFLD patients than the general population [4]. With the rapidly rising of morbidity, NAFLD imposes a major threat to the health of human and has become a worldwide public health problem [5].
However, no standard pharmacologic therapy is available for NAFLD currently. In view of the burden to NAFLD, a pressing need in pharmacologic treatment options is to be solved for this patient population [6]. Some evidences suggested that gut-liver axis is closely associated with NAFLD. There are over 10000 microbes that live in a symbiotic relationship with human body in intestinal tract and could influence the host in a variety of ways. For example, endotoxin produced by intestinal bacteria could be phagocyted by the Kupffer cells in the liver via blood circulation and therefore lead to a constantly expose, which conduces to the progression of liver inflammation [7]. Consequently, a supplement of probiotics to regulate the imbalanced intestinal flora and reduce the production of detrimental metabolite has a potential value in the treatment of NAFLD.
Lots of RCTs surrounding probiotics and NAFLD have been published in recent year, but efficacies of probiotics remain controversial. We therefore performed a systematic literature search and meta-analysis to provide an overview of the currently available evidence for the efficacy of probiotics in the treatment of NAFLD patients.
2. Materials and Methods
This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [8]. Briefly, clinical trials assessing the effects of probiotics versus a control group were included. Two investigators independently performed following data extraction, risk of bias, meta-analyses, and Grading of Recommendations Assessment, Development and Evaluation (GRADE) scoring, with divergences resolved by a third investigator.
2.1. Date Sources and Literature Search
Reports in English and Chinese languages published from the establishment of each database to April 2019 were reviewed. The English databases included PubMed, Embase, Cochrane Library, Web of Science, and OVID. The Chinese databases included China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodicals, China Biology Medicine disc, and Wanfang Database. The literature searches were performed by two reviewers independently. Mesh term and free text including “nonalcoholic fatty liver disease” and “probiotics” were used. The full search strategy is available in supplementary data. The searches were performed without limiting the types of studies to maximize scope. We also searched abstracts and references from bibliographies of relevant studies, review articles, and meta-analyses for additional items manually.
2.2. Study Selection
Two reviewers screened the titles and abstracts of the identified papers to further check the eligibility criteria independently. The full texts of the studies were assessed when abstracts could not provide clear information. To be eligible for inclusion, studies testing the use of probiotics in the treatment of NAFLD were included. There was no specific restriction (for example, age or sex). The PICOS criteria for inclusion and exclusion of studies is shown in Table 1.
Table 1
PICOS criteria for inclusion and exclusion of studies.
Parameter | Defined criteria for current study |
---|---|
P (population) | Patients with NAFLD |
I (intervention) | Probiotic supplementation |
C (comparison) | Placebo (product without microorganisms) |
O (outcomes) | Effects of probiotic supplementation (body mass index, liver functions, blood glucose, blood lipids, inflammation index) |
S (study design) | Randomized clinical trials |
Studies were considered eligible if they met the following criteria: (a) studies testing the effects of probiotics in the treatment of NAFLD patients; (b) patients with NAFLD should diagnosed on the basis of radiological/histological evidence of fatty liver, with daily alcohol intake restriction (less than 14 standard drinks in women and 21 standard drinks in men per week) [2]; (c) randomized and controlled design with the probiotic group and control group; (d) cointerventions were also considered eligible when they used both intervention arms equally; (e) studies which directly evaluated the effect of probiotics based on any method of outcome measures; (f) studies were written in English or Chinese; and (g) all data needed are available.
Studies were excluded if they (a) were case reports, reviews, or letters; (b) were only published as conference abstracts or contained no original data; (c) contained duplicate data already published; (d) performed no control group; and (e) contained patients with other causes of hepatic steatosis.
2.3. Data Extraction
All data were independently abstracted in duplicate by two reviewers using a predefined data form, with disagreements resolved with a third reviewer. Information including study design, characteristics, population, details of intervention, and control were extracted. Mean and standard deviation (SD) of each endpoint were either extracted or calculated from data in each study.
2.4. Risk of Bias
We used funnel plots to provide a visual assessment of the association between treatment estimate and study size. Egger’s tests were performed to assess the asymmetry of funnel plots, with significant publication bias defined as
2.5. Statistical Analysis
Primary outcomes were liver-related outcomes, for example, serum level of alanine aminotransferase (ALT), aspartate transaminase (AST), and gamma-glutamyl transpeptidase (GGT). Secondary outcomes included metabolic outcomes, for example, change in body mass index (BMI), fasting blood sugar (FBS), insulin, homeostasis model assessment-insulin resistance (HOMA-IR), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), total cholesterol (TC), and tumor necrosis factor-alpha (Tnf-α).
For the meta-analysis, we performed comparisons with a random effects model because they are more conservative and have better properties in the presence of heterogeneity [13]. The differences of measured continuous parameters were calculated and analyzed using weighted mean difference (WMD/MD) changes from baseline along with the 95% confidence intervals (CIs). A statistically significant
Review Manager version 5.3 was selected to analyze the tests for the forest plots, subgroup analysis, and quality assessment, while the risk of publication bias and meta-regression analysis were performed by Stata version 12.0. Egger’s tests; sensitivity analysis and meta-regression were only performed for items which include over ten studies.
2.6. Quality of Evidence
Additionally, we assessed the strength of evidence using the GRADE framework with GRADEprofiler version 3.6 [16]. More concretely, outcomes were graded according to risk of bias, consistency and directness of results, precision, publication bias, and magnitude. Finally, evidences were defined as high, moderate, low, and very low quality.
3. Results
3.1. Characteristics of the Retrieved Studies and Patients
The electronic searches yielded 3159 items from databases mentioned above, and 14 additional records were identified through other sources. After reviewing each publication, we selected 28 studies according to inclusion and exclusion criteria (the included studies are shown as references [17–44]). A flow chart for the literature retrieval and screening is presented in Figure 1(a). The studies included predominantly RCTs. Table 2 demonstrates the available detailed information of trials. They scored well in terms of adequate descriptions of selection criteria and the availability of clinical data (Figure 1(b) A). Eight (29%) studies were published after 2014 (Figure 1(b) B). These twenty-eight studies included a total of 1555 NAFLD patients, within 824 (111 children) in the probiotic group and 731 (112 children) in the control group (Figure 1(b) C). The distribution of sex is shown in Figure 1(b) D. Most of the included patients were from Iran (11, 39%), China (6, 21%), and Italy (4, 14%) (Figure 1(b) E). And the durations of probiotics taken range from 4 to 28 weeks (Figure 1(b) F). The recruited studies were further subjected to risk analyses for bias, while Figure 2 is a summary of the assessment results. Most of the studies were in low categories for risk of bias, random sequence generation (20/28, 71%), incomplete outcome data (22/28, 79%), and allocation concealment (13/28, 76%), blinding of outcome assessment (20/28, 71%).
[figures omitted; refer to PDF]
Table 2
Characteristics of the included studies.
Author, year | Region, period | Study design | Mean age (y), male (%) | Intervention, |
Control, |
Diet/exercise by guide | Follow-up duration (w) | |
---|---|---|---|---|---|---|---|---|
Abdel, 2017 | Egypt, 2014-2016 | NA, SC, PC | 30 | 44, 56.67 | Lactobacillus acidophilus, |
Placebo, |
NA | 4 |
Shavakhi et al., 2013 | Iran, 2010-2012 | DB, SC, PC | 63 | Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Bifidobacterium breve, Bifidobacterium longum, |
Placebo, |
Yes | 24 | |
Ahn et al., 2019 | Korea, NA | DB, SC, PC | 48 | L. acidophilus CBT LA1, L. rhamnosus CBT LR5, L. paracasei CBT LPC5, P. pentosaceus CBT SL4, B. lactis CBT BL3, B. breve CBT BR3, |
Placebo, |
Yes | 12 | |
Alisi et al., 2014 | Italy, 2012-2013 | DB, SC, PC | 44 | 10.5 (children), 54.55 | VSL#3, |
Placebo, |
Yes | 16 |
Aller et al., 2011 | Spain, NA | DB, SC, PC | 28 | Lactobacillus bulgaricus, Streptococcus thermophilus, |
Placebo, |
NA | 12 | |
Asgharian et al., 2016 | Iran, 2014-2014 | DB, SC, PC | 74 | Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Bifidobacteriumbreve, Bifidobacterium longum, Streptococcus thermophilus, |
Placebo, |
Yes | 8 | |
Bakhshimoghaddam et al., 2018 | Iran, 2016-2017 | DB, SC, PC | 68 | Streptococcus thermophilus, Lactobacillus delbrueckii subsp. Bulgaricus, |
Placebo, |
Yes | 24 | |
Behrouz et al., 2017 | Iran, 2015 | DB, SC, PC | 60 | Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus, Bifidobacterium longum, Bifidobacterium breve, |
Placebo, |
Yes | 12 | |
Cakir et al., 2017 | Turkey, NA | DB, SC, PC | 60 | Bifidobacterium lactis, Lactobacillus acidophilus, Lactobacillus casei, |
Placebo, |
Yes | 16 | |
Ekhlasi et al., 2016 | Iran, 2012-2013 | DB, SC, PC | 30 | 42.5, NA | Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophilus, Bifidobacterium breve, Lactobacillus acidophilus, Bifidobacterium longum, Lactobacillus bulgaricus, |
Placebo, |
NA | 8 |
Eslamparast et al., 2014 | Iran, 2012-2012 | DB, MC, PC | 46 | Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophilus, Bifidobacterium breve, Lactobacillus acidophilus, Bifidobacterium longum, Lactobacillus bulgaricus, |
Placebo, |
Yes | 28 | |
Famouri et al., 2017 | Iran, 2014-2014 | DB, SC, PC | 64 | Lactobacillus acidophilus, Bifidobacterium lactis, B. bifidu m, L. rhamnosus, |
Placebo, |
Yes | 12 | |
Ferolla et al., 2016 | Brazil, 2014-2015 | NA, SC, PC | 50 | 57.3, 24 | Synbiotic, L. reuteri, |
Placebo, |
Yes | 12 |
Guo et al., 2016 | China, 2011-2013 | NA, SC, PC | 84 | Bifidobacterium longum, Lactobacillus acidophilus, Enterococcus faecalis, |
Placebo, |
Yes | 8 | |
Javadi et al., 2017 | Iran, 2013-2014 | DB, SC, PC | 39 | Bifidobacterium longum, Lactobacillus acidophilus, |
Placebo, |
NA | 12 | |
Jiang et al., 2015 | China, 2014-2015 | NA, SC, PC | 62 | 42.58, 53.03 | Bifidobacterium longum, Lactobacillus acidophilus, Enterococcus faecalis, |
Placebo, |
Yes | 12 |
Kobyliak et al., 2018 | Ukraine, NA | DB, SC, PC | 58 | Lactobacillus, Lactococcus, Bifidobacterium, Propionibacterium, Acetobacter, |
Placebo, |
Yes | 8 | |
Lu et al., 2016 | China, 2014-2015 | NA, SC, PC | 120 | Bifidobacterium infantis, Lactobacillus acidophilus, Enterococcus faecalis, Bacillus cereus, |
Placebo, |
Yes | 4 | |
Malaguarnera et al., 2012 | Italy, 2003-2006 | DB, SC, PC | 66 | Bifidobacterium longum, |
Placebo, |
Yes | 24 | |
Manzhalii et al., 2017 | Ukraine, NA | NA, SC, PC | 66 | Lactobacillus casei, L. rhamnosus, L. bulgaris, Bifidobacterium longum, Streptococcus thermophilus, |
Placebo, |
Yes | 12 | |
Miccheli et al., 2015 | Italy, NA | DB, SC, PC | 31 | 10.5 (children), 54.84 | VSL#3, |
Placebo, |
Yes | 16 |
Mofidi et al., 2017 | Iran, NA | DB, SC, PC | 42 | Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophilus, Bifidobacterium breve, Lactobacillus acidophilus, Bifidobacterium longum, Lactobacillus bulgaricus, |
Placebo, |
Yes | 28 | |
Nabavi et al., 2015 | Iran, NA | DB, SC, PC | 72 | Probiotic yogurts (Lactobacillus bulgaricus, Streptococcus thermophilus, B. lactis Bb12, L. acidophilus La5) |
Conventional yogurts, |
NA | 8 | |
Sepideh et al., 2016 | Iran, 2013-2013 | DB, SC, PC | 42 | Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Bifidobacterium breve, Bifidobacterium longum, Streptococcus thermophilus, |
Placebo, |
NA | 8 | |
Vajro et al., 2011 | Italy, NA | DB, SC, PC | 20 | Lactobacillus GG, |
Placebo, |
NA | 8 | |
Wong et al., 2013 | China, 2009-2009 | DB, SC, PC | 20 | Lactobacillus plantarum, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium bifidum, |
Placebo, |
Yes | 24 | |
Yang et al., 2012 | China, 2010-2011 | NA, SC, PC | 60 | Bacillus subtilis, Enterococcus, |
Placebo, |
Yes | 4 | |
Yao et al., 2013 | China, 2010-2012 | DB, SC, PC | 108 | Bifidobacterium longum, Lactobacillus acidophilus, Enterococcus faecalis, |
Placebo, |
Yes | 12 |
DB: double blinded, SC: single center, MC: multicenter, PC: placebo controlled, NA: not available, ITT: intention to treat.
[figure omitted; refer to PDF]3.2. Impact of Probiotics on BMI in NAFLD Patients
The effect of probiotics on BMI was studied in 15 of the identified studies. Results showed that the trend was significantly associated with probiotics (WMD: -1.46, 95% CI: [-2.44, -0.48],
[figures omitted; refer to PDF]
3.3. Impact of Probiotics on Liver Functions in NAFLD Patients
3.3.1. ALT
Data regarding ALT extracted from 20 studies included 1116 individuals, and the analyses showed a significant association between the probiotic group and placebo group (WMD: -13.40, 95% CI: [-17.03, -9.77],
3.3.2. AST
The analyses of AST, which were performed based on pooled data extracted from 17 heterogeneous studies (
[figures omitted; refer to PDF]
3.3.3. GGT
Seven studies investigated GGT between the interventional group and the control group. Results showed that GGT was significantly associated with probiotic (WMD: -9.88, 95% CI: [-17.77, -1.99],
3.4. Impact of Probiotics on Glycemic Indices in NAFLD Patients
3.4.1. FBS
In the case of FBS, there was no statistical difference between the probiotic and control groups (WMD: -4.98, 95% CI: [-9.95, -0.02],
[figures omitted; refer to PDF]
3.4.2. Insulin
Ten studies reported on insulin between the interventional group and the control group. Figure 4(b) shows that insulin was significantly associated with probiotics (WMD: -1.32, 95% CI: [-2.43, -0.21],
3.4.3. HOMA-IR
Data pertinent to HOMA-IR were extracted from 11 heterogeneous studies (
[figures omitted; refer to PDF]
3.5. Impact of Probiotics on Lipid Profiles in NAFLD Patients
3.5.1. HDL-C
Data regarding HDL-C extracted from 8 studies included 408 individuals, and the analyses found no significant association between the interventional group and the control group (WMD: 1.32, 95% CI: [-2.00, 4.64],
3.5.2. LDL-C
Results showed that there was no significant difference between the interventional group and the control group for LDL-C (WMD: -6.14, 95% CI: [-21.85, 9.30],
[figures omitted; refer to PDF]
3.5.3. TG
In the case of TG, there was no statistic difference between the probiotics and the control group (WMD: -9.60, 95% CI: [-22.13, 2.93],
3.5.4. TC
12 studies reported on TC between the interventional group and the control group. Results showed that TC was not significantly associated with probiotics (WMD: -15.38, 95% CI: [-26.50, -4.25],
3.6. Impact of Probiotics on Inflammation Factors in NAFLD Patients
Tnf-α is considered to reflect inflammatory state. No significant correlation existed between Tnf-α and probiotics (WMD: -0.65, 95% CI: [-1.56, 0.27],
3.7. Meta-Regression Analyses
For meta-regression analyses, several variables (population, region, duration, and lifestyle change) were eligible for inclusion in the univariable regression analysis. As shown in Table 3, all of the variables except population for BMI showed no influence on the effect of probiotics (
Table 3
Univariable predictors with meta-regression on the effect of probiotics.
Variable | No | Regression coefficient (95% CI) | SE | ||
---|---|---|---|---|---|
BMI | |||||
Population | Adults | 13 | 1 | — | — |
Children | 2 | -0.3 (-0.1 to -0.6) | 0.12 | 0.013 | |
ALT | |||||
Region | Asia | 13 | 1 | — | — |
Europe | 6 | -4.6 (-6 to -1.4) | 0.76 | 0.09 | |
US or others | 1 | -5.5 (-9.4 to -0.7) | 2.15 | 0.31 | |
AST | |||||
Duration | 4-12 w | 11 | 1 | — | — |
12-28 w | 6 | -3.5 (-9.6 to -0.8) | 0.9 | 0.54 | |
FBS | |||||
Region | Asia | 8 | 1 | — | — |
Europe | 4 | 2 (0.2 to 5.2) | 0.63 | 0.62 | |
US or other | 1 | -3.5 (-5.6 to 1.1) | 1.68 | 0.78 | |
Insulin | |||||
Duration | 4-12 w | 5 | 1 | — | — |
12-28 w | 5 | -0.07 (-1.92 to -0.01) | 0.21 | 0.11 | |
HOMA-IR | |||||
Lifestyle | Maintain original lifestyle | 4 | 1 | — | — |
Follow the guidelines | 7 | -0.03 (-0.04 to -0.01) | 0.005 | 0.23 | |
TG | |||||
Region | Asia | 8 | 1 | — | — |
Europe | 4 | -7.8 (-11.1 to 1.2) | 1.54 | 0.18 | |
US or others | 1 | 1.1 (-2.1 to 5) | 1.78 | 0.65 | |
TC | |||||
Duration | 4-12 w | 8 | 1 | — | — |
12-28 w | 4 | -5.8 (-7.9 to -0.1) | 0.98 | 0.52 | |
Tnf-α | |||||
Lifestyle | Maintain original lifestyle | 4 | 1 | — | — |
Follow the guidelines | 6 | -0.04 (-0.08 to -0.01) | 0.007 | 0.44 |
SE: standard error, BMI: body mass index, ALT: alanine aminotransferase, AST: aspartate transaminase, FBS: fasting blood sugar, HOMA-IR: homeostasis model assessment-insulin resistance, TG: triglycerides, TC: total cholesterol, Tnf-α: tumor necrosis factor-alpha.
3.8. Quality of Evidence
The results of evidence quality assessment are shown in Supplemental Table 2. For the outcome of BMI, the effect of probiotics was supported by moderate-quality evidence. For the outcome of liver function, the effects of probiotics were supported by high-quality evidence in ALT, moderate-quality evidence in AST, and low-quality evidence in GGT. For the outcome of glycemic indices, the effects of probiotics were supported by at least moderate-quality evidence in all indications. For the outcome of TC and TG, the effects of probiotics were supported by moderate-quality evidence. For the outcome of HDL-C and LDL-C, the effects of probiotics were supported by low-quality evidence. Inflammation factor was supported by low quality or very low quality of evidence.
3.9. Adverse Event
Few minor adverse events were reported: one patient complained of moderate headaches and two of musculoskeletal pain; two patients appeared dyspepsia, and both of which were resolved without reoccurrence. No serious adverse event was reported in all studies. We think there was no evidence to suggest that adverse events occurred are associated with probiotics untaken.
4. Discussion
Although a number of RCTs designed to identify efficacy and secure therapy for NAFLD are in progress [45–47], no agent has received approval by the Food and Drug Administration for the treatment of NAFLD as yet. Thus, it is necessary to update a systematic review to assess the efficacy of probiotics in NAFLD treatment. In this meta-analysis, we summarized evidence from 28 studies involving 1555 patients with NAFLD to assess the efficacies of probiotic interventions for several important outcomes, including BMI, liver functions, glycemic indices, lipid profiles, and inflammation factors. Overall, probiotics may play a more inspiring effect than we have ever predicted.
A recent analysis involving more than 8.5 million persons over 22 countries showed that 80% of patients with NAFLD are overweight or obese [4]. This information supports the concept that NAFLD is a metabolic syndrome with systemic disorder of energy homeostasis that accompanies hepatic adiposity [48]. Likewise, our results showed significant association between probiotics and BMI (
NAFLD usually first suspected when a moderately increase was detected among ALT, AST, and GGT by liver function tests [4]. Our meta-analysis results showed that probiotics had a mitigating effect on ALT, AST, and GGT in patients with NAFLD. The subgroup analyses suggested a small dose of probiotics could still exert a protective effect on liver (Figure S10 B–D). Results of LSM demonstrated that probiotics could not reverse liver stiffness or liver histology; however, hepatic steatosis change defined by liver ultrasound showed a positive result (Figure S10 E–F). Our results are also supported by previous publications [52, 53]. Although Gao et al. [49] suggested that there exist some confusions on the effects of probiotics in improving liver functions due to the high heterogeneity and a lack of liver biopsy in their meta-analysis, our results showed a good robustness of association between probiotics and liver functions of NAFLD patients, which is difficult to get a opposite conclusion, regardless of the heterogeneity. Moreover, probiotics are also beneficial to abnormal liver functions caused by cirrhosis and alcoholic liver disease [54, 55]. The protective effect may due to an inhabitation of intestinal bacterial overgrowth and a reduction in serum endotoxin levels. In all, we believe that probiotics could improve liver functions (not limited to NAFLD) but seems no help to reverse the liver fibrosis. To consummate our conclusion, liver biopsy is needed in further researches.
It has been proved that hyperinsulinemia and insulin resistance (IR) are closely associated with NAFLD, and IR has strongly negative effects in liver metabolism [56]. Our meta-analysis results suggested a beneficial effect of probiotics in insulin level and IR but nonsignificant decrease in FBS. This notion is consistent with a recent review suggesting that probiotic supplementation may have a moderately beneficial effect on HOMA-IR control [52]. It is noteworthy that the results of FBS could be influenced by several factors, including patients’ condition and test method. Different approaches between studies may lead to the instability of the FBS results and contribute to the instability. Altogether, although probiotics might not have direct impact on blood glucose level, they could contribute to insulin resistance improvement in NAFLD patients according to our study. The administration of probiotics appears to have a beneficial role in the management of glucose homeostasis in NAFLD patients. Furthermore, a unified standard for FBS measuring should be set up and strictly enforced by future related researches.
High liver fat content leads to increased serum fatty acids, but our results suggested a negative association between probiotics and lipid profiles. After the subgroup analysis by probiotic strains, effects of probiotics on the levels of HDL-C, LDL-C, and TC were only detected in few certain conditions. A previous meta-analysis of 30 clinical trials conducted by Cho and Kim [57] reported that there was no significant effect of probiotics on HDL-C or TG, while the effects of probiotics on TC and LDL-C depended on variety of factors, for example, baseline of TC level, treatment durations, and certain probiotic strains, which was also confirmed by Shimizu et al. [58]. The superiority of above meta-analyses is that they included more RCTs and performed more particular analyses, which is convincing. However, populations included in these meta-analyses were not restrict to NAFLD patients which might lead to confusion. Although there are theories for the effect of probiotics on regulating lipid profiles [59–61], a strong evidence on the effect of probiotics in NAFLD patients is absence currently. Studies included in our meta-analysis are still heterogeneous, although we had performed the subgroup analysis and meta-regression. We reserved about the effects of probiotics on the regulation of lipid profiles in NAFLD patients and suggest that they may not as effective as reported before. A range of confounding factors (region, baseline of TC level, treatment durations, and certain probiotic strains) which could disturb the results of lipid profiles were credited and should be taken notice in further clinical trials.
Some researchers proposed a “three-hit” theory to explain the development of NAFLD, including steatosis, lipotoxicity, and inflammation [62]. Steatosis results in increased signaling of NF-κβ and promotes a production of proinflammatory mediators like Tnf-α, which contribute to the recruitment and activation of Kupffer cells to mediate inflammation in NAFLD [63–65]. Our results suggested that probiotics had no significant efficacy in inflammation factors, but the sensitivity analysis results showed a reversed conclusion when we excluded the study by Eslamparast et al. [27]. After we reread the item, we think it is a high-quality RCT and cannot be excluded, which demonstrated that our conclusion on Tnf-α was instable. Little systematic review or meta-analysis has been performed regarding the role of probiotics in inflammation factors in NAFLD patients. Zarrati et al. [66] suggested that the expression of Tnf-α did not change with the use of probiotic yogurt. But Sepideh et al. [40] gave a significant result. Meta-analysis by Gao et al. [49] included four homogeneous studies indicated that probiotics had a positive effect in reducing Tnf-α levels in NAFLD patients, which may be a reference. In all, we think there is no strong evidence to confirm the effect of probiotics on inflammation factors, while more clinical trials are needed.
It should be noticed that the diversity of probiotic intervention employed by the different studies may result in confounding, which is important because lots of publications have proved that different species of probiotics may promote opposing effects in human beings [67]. However, complex existing data including doses, durations, pharmaceutical formulations, and combination of treatment differed in each study are difficult to reconcile. Still, we found that probiotics utilized in the included studies overlapped significantly, which were mainly characteristics by Lactobacillus or Bifidobacterium strains, or their combinations. To explore the effect of different probiotic strains, we conducted the subgroup analyses according to different probiotic formulations utilized (Figures 4–7). Interestingly, we found that Bifidobacterium spp. seems to perform a better effect than Lactobacillus spp. However, giving the fact that standardization in the form and course of currently marketed probiotic supplements is absence, it is difficult to perform direct comparisons between these formulations. But on the other hand, we think it is reasonable to accept the biological plausibility of probiotics for their positive effects according to previous clinical trials. In total, our results could not reach yield specific insights for the formulations or duration in the utilized of probiotics in NAFLD treatments. It is important and meaningful to obtain more in-depth comprehension in the role of gut microbiota in the pathogenesis of NAFLD, which may contribute to a recognized probiotic formulation and application method or achieve the more attractive individualized treatment.
No serious adverse event related to the administration of probiotics was found in this review. However, the trials included in this review excluded NAFLD patients with underlying conditions such as hepatitis B, hepatitis C, autoimmune hepatitis, liver decompensation, and genetic liver disease so that the side effect of probiotics in NAFLD patients with above diseases is unknown.
Limitations of our review, which are inherent to the nature of the individual studies and meta-analysis, need to be mentioned as well. (1) There was high unexplained heterogeneity among studies. To tackle this issue, a random effects model and sensitive analysis were applied to minimize the disturb of heterogeneity. Furthermore, the subgroup analysis and meta-regression were performed to find potential sources of heterogeneity. (2) Regardless of positive findings above, all the endpoints in these studies are surrogate outcome, not a hard endpoint (e.g., mortality). Considering the fact that it is impractical to perform large and long clinical trials to identify the treatment-related clinical benefits of probiotics due to the slow nature progressive of NAFLD, it is logical to assume the reduction of surrogate markers translates into reduction of cirrhosis, or liver-related mortality, while liver biopsy offers the best surrogate measure. But little study in our meta-analysis performed a histological feature because of the invasive in liver biopsy, which decreases the quality of evidence. (3) Literatures published in languages except English and Chinese were not detected, which result in selection bias.
BMI, ALT, AST, glycemic indices, TG, and TC showed at least moderate-quality evidence, while HDL-C, LDL-C, and Tnf-α suggested low or very low-quality evidence, which is mainly based on the small quantity of individuals included and high heterogeneity. To increase the quality of the summarized evidence, we strongly recommend that further clinical trials should pay more attention on indexes of liver fibrosis and inflammation factors. Despite limitations, this review provides an in-depth assessment of the effect of probiotics in NAFLD patients. As a final observation, since probiotics is affordable, widely available, and safe, we encourage NAFLD patients with obesity, abnormality liver enzymology, or hyperglycemia to use probiotics as a complementary therapeutic approach.
In conclusion, our meta-analysis clearly identifies probiotics as a common complementary therapeutic approach in NAFLD patients, which warrants attention. We clarified that probiotics is superior to placebo in improving BMI, liver enzymology, and hyperglycemia in NAFLD patients. Furthermore, more RCTs, particularly investigate indexes of liver fibrosis and inflammation factors, are warranted to further establish a more comprehensive assessment on the efficacy of probiotics in NAFLD patients, which would inform the development of relative practice guidelines in the future.
Authors’ Contributions
Zhao-Hua Shen drew up the searching strategies. Meng-Wei Xiao and Shi-Xin Lin performed literature search and extracted data. Wei-Wei Luo performed the statistical analyses. Xiao-Yan Wang involved in drafting and revising the manuscript. All authors approved the final version of the manuscript and agreed to be accountable for all aspects of the work.
[1] N. Sattar, E. Forrest, D. Preiss, "Non-alcoholic fatty liver disease," BMJ, vol. 349, article g4596,DOI: 10.1136/bmj.g4596, 2014.
[2] N. Chalasani, Z. Younossi, J. E. Lavine, M. Charlton, K. Cusi, M. Rinella, S. A. Harrison, E. M. Brunt, A. J. Sanyal, "The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases," Hepatology, vol. 67 no. 1, pp. 328-357, DOI: 10.1002/hep.29367, 2018.
[3] Z. M. Younossi, A. B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, M. Wymer, "Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes," Hepatology, vol. 64 no. 1, pp. 73-84, DOI: 10.1002/hep.28431, 2016.
[4] A. M. Diehl, C. Day, "Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis," The New England Journal of Medicine, vol. 377 no. 21, pp. 2063-2072, DOI: 10.1056/NEJMra1503519, 2017.
[5] J. C. Cohen, J. D. Horton, H. H. Hobbs, "Human fatty liver disease: old questions and new insights," Science, vol. 332 no. 6037, pp. 1519-1523, DOI: 10.1126/science.1204265, 2011.
[6] O. Cai, Z. Huang, M. Li, C. Zhang, F. Xi, S. Tan, "Association between Helicobacter pylori Infection and Nonalcoholic Fatty Liver Disease: A Single-Center Clinical Study," Gastroenterology Research and Practice, vol. 2018,DOI: 10.1155/2018/8040262, 2018.
[7] F. Marra, G. Svegliati-Baroni, "Lipotoxicity and the gut-liver axis in NASH pathogenesis," Journal of Hepatology, vol. 68 no. 2, pp. 280-295, DOI: 10.1016/j.jhep.2017.11.014, 2018.
[8] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, PRISMA Group, "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement," Annals of Internal Medicine, vol. 151 no. 4, pp. 264-269, DOI: 10.7326/0003-4819-151-4-200908180-00135, 2009.
[9] J. Bowden, G. Davey Smith, P. C. Haycock, S. Burgess, "Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator," Genetic Epidemiology, vol. 40 no. 4, pp. 304-314, DOI: 10.1002/gepi.21965, 2016.
[10] S. Duval, R. Tweedie, "Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis," Biometrics, vol. 56 no. 2, pp. 455-463, DOI: 10.1111/j.0006-341X.2000.00455.x, 2000.
[11] A. R. Jadad, R. A. Moore, D. Carroll, C. Jenkinson, D. J. M. Reynolds, D. J. Gavaghan, H. J. McQuay, "Assessing the quality of reports of randomized clinical trials: is blinding necessary?," Controlled Clinical Trials, vol. 17 no. 1,DOI: 10.1016/0197-2456(95)00134-4, 1996.
[12] J. P. T. Higgins, D. G. Altman, P. C. Gotzsche, P. Juni, D. Moher, A. D. Oxman, J. Savovic, K. F. Schulz, L. Weeks, J. A. C. Sterne, Cochrane Bias Methods Group, Cochrane Statistical Methods Group, "The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials," BMJ, vol. 343, article d5928,DOI: 10.1136/bmj.d5928, 2011.
[13] S. E. Brockwell, I. R. Gordon, "A comparison of statistical methods for meta-analysis," Statistics in Medicine, vol. 20 no. 6, pp. 825-840, DOI: 10.1002/sim.650, 2001.
[14] J. P. Higgins, S. G. Thompson, J. J. Deeks, D. G. Altman, "Measuring inconsistency in meta-analyses," BMJ, vol. 327 no. 7414, pp. 557-560, DOI: 10.1136/bmj.327.7414.557, 2003.
[15] J. Y. Dong, L. Zhang, Y. H. Zhang, L. Q. Qin, "Dietary glycaemic index and glycaemic load in relation to the risk of type 2 diabetes: a meta-analysis of prospective cohort studies," The British Journal of Nutrition, vol. 106 no. 11, pp. 1649-1654, DOI: 10.1017/S000711451100540X, 2011.
[16] G. Guyatt, A. D. Oxman, E. A. Akl, R. Kunz, G. Vist, J. Brozek, S. Norris, Y. Falck-Ytter, P. Glasziou, H. deBeer, "GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables," Journal of Clinical Epidemiology, vol. 64 no. 4, pp. 383-394, DOI: 10.1016/j.jclinepi.2010.04.026, 2011.
[17] S. M. Abdel Monem, "Probiotic therapy in patients with nonalcoholic steatohepatitis in Zagazig University hospitals," Euroasian Journal of Hepato-Gastroenterology, vol. 7 no. 1, pp. 101-106, DOI: 10.5005/jp-journals-10018-1226, 2017.
[18] A. Shavakhi, M. Minakari, H. Firouzian, R. Assali, A. Hekmatdoost, G. Ferns, "Effect of a probiotic and metformin on liver aminotransferases in non-alcoholic steatohepatitis: a double blind randomized clinical trial," International Journal of Preventive Medicine, vol. 4 no. 5, pp. 531-537, 2013.
[19] S. B. Ahn, D. W. Jun, B. K. Kang, J. H. Lim, S. Lim, M. J. Chung, "Randomized, double-blind, placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease," Scientific Reports, vol. 9 no. 1, article 5688,DOI: 10.1038/s41598-019-42059-3, 2019.
[20] A. Alisi, G. Bedogni, G. Baviera, V. Giorgio, E. Porro, C. Paris, P. Giammaria, L. Reali, F. Anania, V. Nobili, "Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis," Alimentary Pharmacology & Therapeutics, vol. 39 no. 11, pp. 1276-1285, DOI: 10.1111/apt.12758, 2014.
[21] R. Aller, D. A. de Luis, O. Izaola, R. Conde, M. Gonzalez Sagrado, D. Primo, B. de la Fuente, J. Gonzalez, "Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial," European Review for Medical and Pharmacological Sciences, vol. 15 no. 9, pp. 1090-1095, 2011.
[22] A. Asgharian, G. Askari, A. Esmailzade, A. Feizi, V. Mohammadi, "The effect of symbiotic supplementation on liver enzymes, C-reactive Protein and Ultrasound Findings in Patients with Non-alcoholic Fatty Liver Disease: A Clinical Trial," International Journal of Preventive Medicine, vol. 7 no. 1,DOI: 10.4103/2008-7802.178533, 2016.
[23] F. Bakhshimoghaddam, K. Shateri, M. Sina, M. Hashemian, M. Alizadeh, "Daily consumption of synbiotic yogurt decreases liver steatosis in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial," The Journal of Nutrition, vol. 148 no. 8, pp. 1276-1284, DOI: 10.1093/jn/nxy088, 2018.
[24] V. Behrouz, S. Jazayeri, N. Aryaeian, M. J. Zahedi, F. Hosseini, "Effects of probiotic and prebiotic supplementation on leptin, adiponectin, and glycemic parameters in non-alcoholic fatty liver disease: a randomized clinical trial," Middle East Journal of Digestive Diseases, vol. 9 no. 3, pp. 150-157, DOI: 10.15171/mejdd.2017.66, 2017.
[25] M. Cakir, A. Aksel Isbilen, I. Eyupoglu, E. Sag, A. Orem, T. Mazlum Sen, N. Kaklikkaya, G. Kaya, "Effects of long-term synbiotic supplementation in addition to lifestyle changes in children with obesity-related non-alcoholic fatty liver disease," Turkish Journal of Gastroenterology, vol. 28 no. 5, pp. 377-383, DOI: 10.5152/tjg.2017.17084, 2017.
[26] G. Ekhlasi, R. K. Mohammadi, S. Agah, M. Zarrati, A. F. Hosseini, S. S. S. Arabshahi, F. Shidfar, "Do symbiotic and vitamin E supplementation have favorite effects in nonalcoholic fatty liver disease? A randomized, double-blind, placebo-controlled trial," Journal of Research in Medical Sciences, vol. 21 no. 1,DOI: 10.4103/1735-1995.193178, 2016.
[27] T. Eslamparast, H. Poustchi, F. Zamani, M. Sharafkhah, R. Malekzadeh, A. Hekmatdoost, "Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study," The American Journal of Clinical Nutrition, vol. 99 no. 3, pp. 535-542, DOI: 10.3945/ajcn.113.068890, 2014.
[28] F. Famouri, Z. Shariat, M. Hashemipour, M. Keikha, R. Kelishadi, "Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents," Journal of Pediatric Gastroenterology and Nutrition, vol. 64 no. 3, pp. 413-417, DOI: 10.1097/MPG.0000000000001422, 2017.
[29] S. M. Ferolla, C. Couto, L. Costa-Silva, G. Armiliato, C. Pereira, F. Martins, M. Ferrari, E. Vilela, H. Torres, A. Cunha, T. Ferrari, "Beneficial effect of synbiotic supplementation on hepatic steatosis and anthropometric parameters, But Not on Gut Permeability in a Population with Nonalcoholic Steatohepatitis," Nutrients, vol. 8 no. 7,DOI: 10.3390/nu8070397, 2016.
[30] W. Guo, M. Gao, W. Li, C. Peng, H. Xie, Y. Tan, "Therapeutic effect of metformin combined with Bifidobacterium triple viable capsule on non-alcoholic fatty liver disease," Chinese Journal of New Drugs, vol. 25 no. 4, pp. 439-442, 2016.
[31] L. Javadi, M. Ghavami, M. Khoshbaten, A. Safaiyan, A. Barzegari, B. Pourghassem Gargari, "The effect of probiotic and/or prebiotic on liver function tests in patients with nonalcoholic fatty liver disease: a double blind randomized clinical trial," Iranian Red Crescent Medical Journal, vol. 19 no. 4,DOI: 10.5812/ircmj.46017, 2017.
[32] Y. Jiang, L. Li, "Clinical study of microecological preparation combined with polyene phosphatidylcholine in the treatment of non-alcoholic fatty liver disease," University of South China, vol. 7 no. 11, pp. 365-370, 2015.
[33] N. Kobyliak, L. Abenavoli, G. Mykhalchyshyn, L. Kononenko, L. Boccuto, D. Kyriienko, O. Dynnyk, "A multi-strain probiotic reduces the fatty liver index, cytokines and aminotransferase levels in NAFLD patients: evidence from a randomized clinical trial," Journal of Gastrointestinal and Liver diseases, vol. 27 no. 1, pp. 41-49, DOI: 10.15403/jgld.2014.1121.271.kby, 2018.
[34] D. Lu, D. Gong, H. Liao, J. Z. Mai, "Efficacy of Bifidobacterium quadruple viable bacteria in the treatment of nonalcoholic fatty liver disease," Guangdong Medicine, vol. 37 no. 8, pp. 1221-1222, 2016.
[35] M. Malaguarnera, M. Vacante, T. Antic, M. Giordano, G. Chisari, R. Acquaviva, S. Mastrojeni, G. Malaguarnera, A. Mistretta, G. Li Volti, F. Galvano, "Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis," Digestive Diseases and Sciences, vol. 57 no. 2, pp. 545-553, DOI: 10.1007/s10620-011-1887-4, 2012.
[36] E. Manzhalii, O. Virchenko, T. Falalyeyeva, T. Beregova, W. Stremmel, "Treatment efficacy of a probiotic preparation for non-alcoholic steatohepatitis: a pilot trial," Journal of Digestive Diseases, vol. 18 no. 12, pp. 698-703, DOI: 10.1111/1751-2980.12561, 2017.
[37] A. Miccheli, G. Capuani, F. Marini, A. Tomassini, G. Praticò, S. Ceccarelli, D. Gnani, G. Baviera, A. Alisi, L. Putignani, V. Nobili, "Urinary 1 H-NMR-based metabolic profiling of children with NAFLD undergoing VSL3 treatment," International Journal of Obesity, vol. 39 no. 7, pp. 1118-1125, DOI: 10.1038/ijo.2015.40, 2015.
[38] F. Mofidi, H. Poustchi, Z. Yari, B. Nourinayyer, S. Merat, M. Sharafkhah, R. Malekzadeh, A. Hekmatdoost, "Synbiotic supplementation in lean patients with non-alcoholic fatty liver disease: a pilot, randomised, double-blind, placebo-controlled, clinical trial," The British Journal of Nutrition, vol. 117 no. 5, pp. 662-668, DOI: 10.1017/S0007114517000204, 2017.
[39] S. Nabavi, M. Rafraf, M. H. Somi, A. Homayouni-Rad, M. Asghari-Jafarabadi, "Probiotic yogurt improves body mass index and fasting insulin levels without affecting serum leptin and adiponectin levels in non-alcoholic fatty liver disease (NAFLD)," Journal of Functional Foods, vol. 18, pp. 684-691, DOI: 10.1016/j.jff.2015.08.031, 2015.
[40] A. Sepideh, P. Karim, A. Hossein, R. Leila, M. Hamdollah, G. Mohammad E, S. Mojtaba, S. Mohammad, G. Ghader, A. Seyed Moayed, "Effects of multistrain probiotic supplementation on glycemic and inflammatory indices in patients with nonalcoholic fatty liver disease: a double-blind randomized clinical trial," Journal of the American College of Nutrition, vol. 35 no. 6, pp. 500-505, DOI: 10.1080/07315724.2015.1031355, 2016.
[41] P. Vajro, C. Mandato, M. R. Licenziati, A. Franzese, D. F. Vitale, S. Lenta, M. Caropreso, G. Vallone, R. Meli, "Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease," Journal of Pediatric Gastroenterology and Nutrition, vol. 52 no. 6, pp. 740-743, DOI: 10.1097/MPG.0b013e31821f9b85, 2011.
[42] V. W. S. Wong, G. L. H. Wong, A. M. L. Chim, W. C. W. Chu, D. K. W. Yeung, K. C. T. Li, H. L. Y. Chan, "Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study," Annals of Hepatology, vol. 12 no. 2, pp. 256-262, DOI: 10.1016/S1665-2681(19)31364-X, 2013.
[43] L. H. Yang, H. Guo, J. Cai, X. W. Cai, G. L. Liu, D. F. Chen, "Intervention effect of microbiological capsules containing Bacillus subtilis and Enterococcus on intestinal flora in patients with NASH," World Chinese Journal of Digestology, vol. 20 no. 20, pp. 1873-1878, DOI: 10.11569/wcjd.v20.i20.1873, 2012.
[44] H. Yao, W. X. Chen, W. Chen, J. Sun, Q. Sun, "Clinical study of probiotics in the treatment of nonalcoholic fatty liver disease," Chinese Journal of Gastroenterology and Hepatology, vol. 22 no. 3, pp. 221-223, 2013.
[45] L. Brodosi, F. Marchignoli, M. L. Petroni, G. Marchesini, "NASH: a glance at the landscape of pharmacological treatment," Annals of Hepatology, vol. 15 no. 5, pp. 673-681, DOI: 10.5604/16652681.1212318, 2016.
[46] G. Lassailly, R. Caiazzo, F. Pattou, P. Mathurin, "Perspectives on treatment for nonalcoholic steatohepatitis," Gastroenterology, vol. 150 no. 8, pp. 1835-1848, DOI: 10.1053/j.gastro.2016.03.004, 2016.
[47] G. E. Chung, J. Y. Yim, D. Kim, M. S. Kwak, J. I. Yang, S. J. Chung, S. Y. Yang, J. S. Kim, "Associations between white blood cell count and the development of incidental nonalcoholic fatty liver disease," Gastroenterology Research and Practice, vol. 2016,DOI: 10.1155/2016/7653689, 2016.
[48] F. Åberg, J. Helenius-Hietala, P. Puukka, M. Färkkilä, A. Jula, "Interaction between alcohol consumption and metabolic syndrome in predicting severe liver disease in the general population," Hepatology, vol. 67 no. 6, pp. 2141-2149, DOI: 10.1002/hep.29631, 2018.
[49] X. Gao, Y. Zhu, Y. Wen, G. Liu, C. Wan, "Efficacy of probiotics in non-alcoholic fatty liver disease in adult and children: a meta-analysis of randomized controlled trials," Hepatology Research, vol. 46 no. 12, pp. 1226-1233, DOI: 10.1111/hepr.12671, 2016.
[50] J. P. Chouraqui, D. Grathwohl, J. M. Labaune, J. M. Hascoet, I. de Montgolfier, M. Leclaire, M. Giarre, P. Steenhout, "Assessment of the safety, tolerance, and protective effect against diarrhea of infant formulas containing mixtures of probiotics or probiotics and prebiotics in a randomized controlled trial," The American Journal of Clinical Nutrition, vol. 87 no. 5, pp. 1365-1373, DOI: 10.1093/ajcn/87.5.1365, 2008.
[51] T. Dror, Y. Dickstein, G. Dubourg, M. Paul, "Microbiota manipulation for weight change," Microbial Pathogenesis, vol. 106, pp. 146-161, DOI: 10.1016/j.micpath.2016.01.002, 2017.
[52] Y. Y. Ma, L. Li, C. H. Yu, Z. Shen, L. H. Chen, Y. M. Li, "Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis," World Journal of Gastroenterology, vol. 19 no. 40, pp. 6911-6918, DOI: 10.3748/wjg.v19.i40.6911, 2013.
[53] A. Nursalim, U. U. Madina, C. R. Lesmana, "The role of probiotic in reducing hepatic inflammation among NAFLD patients: an evidence-based case report," Acta Medica Indonesiana, vol. 48 no. 4, pp. 327-334, 2016.
[54] R. S. Lo, A. S. Austin, J. G. Freeman, "Is there a role for probiotics in liver disease?," The Scientific World Journal, vol. 2014,DOI: 10.1155/2014/874768, 2014.
[55] R. J. Wong, B. Liu, T. Bhuket, "Significant burden of nonalcoholic fatty liver disease with advanced fibrosis in the US: a cross-sectional analysis of 2011-2014 National Health and Nutrition Examination Survey," Alimentary Pharmacology & Therapeutics, vol. 46 no. 10, pp. 974-980, DOI: 10.1111/apt.14327, 2017.
[56] N. Hossain, P. Kanwar, S. R. Mohanty, "A comprehensive updated review of pharmaceutical and nonpharmaceutical treatment for NAFLD," Gastroenterology Research and Practice, vol. 2016,DOI: 10.1155/2016/7109270, 2016.
[57] Y. A. Cho, J. Kim, "Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials," Medicine, vol. 94 no. 43, article e1714,DOI: 10.1097/MD.0000000000001714, 2015.
[58] M. Shimizu, M. Hashiguchi, T. Shiga, H. O. Tamura, M. Mochizuki, "Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals," PLoS One, vol. 10 no. 10, article e0139795,DOI: 10.1371/journal.pone.0139795, 2015.
[59] G. B. Kim, S. H. Yi, B. H. Lee, "Purification and characterization of three different types of bile salt hydrolases from Bifidobacterium strains," Journal of Dairy Science, vol. 87 no. 2, pp. 258-266, DOI: 10.3168/jds.S0022-0302(04)73164-1, 2004.
[60] M. T. Liong, F. R. Dunshea, N. P. Shah, "Effects of a synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolaemic pigs on high- and low-fat diets," The British Journal of Nutrition, vol. 98 no. 4, pp. 736-744, DOI: 10.1017/S0007114507747803, 2007.
[61] J. Tan, C. McKenzie, M. Potamitis, A. N. Thorburn, C. R. Mackay, L. Macia, "Chapter Three - The role of short-chain fatty acids in health and disease," Advances in Immunology, vol. 121, pp. 91-119, DOI: 10.1016/B978-0-12-800100-4.00003-9, 2014.
[62] E. Cobbina, F. Akhlaghi, "Non-alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters," Drug Metabolism Reviews, vol. 49 no. 2, pp. 197-211, DOI: 10.1080/03602532.2017.1293683, 2017.
[63] N. S. Patel, M. R. Peterson, G. Y. Lin, A. Feldstein, B. Schnabl, R. Bettencourt, E. Seki, C. B. Sirlin, R. Loomba, "Insulin resistance increases MRI-estimated pancreatic fat in nonalcoholic fatty liver disease and normal controls," Gastroenterology Research and Practice, vol. 2013,DOI: 10.1155/2013/498296, 2013.
[64] S. Joshi-Barve, S. S. Barve, K. Amancherla, L. Gobejishvili, D. Hill, M. Cave, P. Hote, C. J. McClain, "Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes," Hepatology, vol. 46 no. 3, pp. 823-830, DOI: 10.1002/hep.21752, 2007.
[65] T. Sugita, K. Amano, M. Nakano, N. Masubuchi, M. Sugihara, T. Matsuura, "Analysis of the serum bile acid composition for differential diagnosis in patients with liver disease," Gastroenterology Research and Practice, vol. 2015,DOI: 10.1155/2015/717431, 2015.
[66] M. Zarrati, E. Salehi, K. Nourijelyani, V. Mofid, M. J. H. Zadeh, F. Najafi, Z. Ghaflati, K. Bidad, M. Chamari, M. Karimi, F. Shidfar, "Effects of probiotic yogurt on fat distribution and gene expression of proinflammatory factors in peripheral blood mononuclear cells in overweight and obese people with or without weight-loss diet," Journal of the American College of Nutrition, vol. 33 no. 6, pp. 417-425, DOI: 10.1080/07315724.2013.874937, 2014.
[67] Z. H. Davidovics, S. Michail, M. R. Nicholson, L. K. Kociolek, N. Pai, R. Hansen, T. Schwerd, A. Maspons, R. Shamir, H. Szajewska, N. Thapar, T. de Meij, A. Mosca, Y. Vandenplas, S. A. Kahn, R. Kellermayer, "Fecal microbiota transplantation for recurrent Clostridium difficile infection and other conditions in children: a joint position paper from the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition," Journal of Pediatric Gastroenterology and Nutrition, vol. 68 no. 1, pp. 130-143, DOI: 10.1097/MPG.0000000000002205, 2019.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2019 Meng-Wei Xiao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/
Abstract
Background and Aims. Probiotics was considered as a potential therapy for nonalcoholic fatty liver disease (NAFLD) without approval and comprehensive assessment in recent years, which call for a meta-analysis. Methods. We performed electronic and manual searches including English and Chinese databases published before April 2019, with the use of mesh term and free text of “nonalcoholic fatty liver disease” and “probiotics.” Clinical trials evaluating the efficacy of probiotic therapy in NAFLD patients were included according to the eligibility criteria. With the use of random effects models, clinical outcomes were presented as weighted mean difference (WMD) with 95% confidence interval (CI), while heterogeneity and meta-regression were also assessed. Results. 28 clinical trials enrolling 1555 criterion proven NAFLD patients with the use of probiotics from 4 to 28 weeks were included. Overall, probiotic therapy had beneficial effects on body mass index (WMD: -1.46, 95% CI: [-2.44, -0.48]), alanine aminotransferase (WMD: -13.40, 95% CI: [-17.03, -9.77]), aspartate transaminase (WMD: -13.54, 95% CI: [-17.86, -9.22]), gamma-glutamyl transpeptidase (WMD: -9.88, 95% CI: [-17.77, -1.99]), insulin (WMD: -1.32, 95% CI: [-2.43, -0.21]), homeostasis model assessment-insulin resistance (WMD: -0.42, 95% CI: [-0.73, -0.12]), and total cholesterol (WMD: -15.38, 95% CI: [-26.50, -4.25]), but not in fasting blood sugar, lipid profiles, or tumor necrosis factor-alpha. Conclusion. The systematic review and meta-analysis support that probiotics are superior to placebo in NAFLD patients and could be utilized as a common complementary therapeutic approach.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410013, China
2 Department of Gynecology and Obstetrics, Third Affiliated Hospital of Nanchang University, Nanchang 330000, China