It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Two existing chlorophyll-a (chl-a) concentration retrieval procedures, which are analytical and empirical, are hindered by the complexity in radiative transfer equation (RTE) and in statistical analyses, respectively. Another promising model in this direction is the use of artificial neural networks (ANN). Mostly, a pixel-to-pixel with one-layer ANN model is used; where in fact that the satellite instrumental errors and man-made objects in water bodies might affect the retrieval and should be taken into account. In this study, the mask-based neural structure, called convolutional neural networks (CNN) model containing both the target and neighborhood pixels, is proposed to reduce the influence of the aforementioned premises. The proposed model is an end-to-end multiple-layer model which integrates band expansion, feature extraction, and chl-a estimation into the structure, leading to an optimal chl-a concentration retrieval. In addition to that, a two-stage training is also proposed to solve the problem of insufficient in-situ samples which happens in most of the time. In the first stage, the proposed model is trained by using the chl-a concentration derived from the water product, provided by satellite agency, and is refined with the in-situ samples in the second stage. Eight Sentinel-3 images from different acquisition time and coincide in-situ measurements over Laguna Lake waters of Philippines were utilized to conduct the model training and testing. Based on quantitative accuracy assessment, the proposed method outperformed the existing dual- and triple- bands combinations in chl-a concentration retrieval.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Geomatics, National Cheng Kung University, Taiwan
2 Department of Geodetic Engineering, University of the Philippines, Philippines