It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We aimed to develop new effective catalysts for the synthesis of propylene carbonate from propylene oxide and carbon dioxide. A kind of Mx+LClx coordination complex was fabricated based on the chelating tridentate ligand 2,6-bis[1-(phenylimino)ethyl] pyridine (L). The obtained products were characterized by elemental analysis, infrared spectroscopy, ultraviolet spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. It was found that the catalytic activity of the complexes with different metal ions, the same ligand differed and co-catalyst, where the order of greatest to least catalytic activity was 2 > 3 > 1. The catalytic system composed of complex 2 and DMAP proved to have the better catalytic performance. The yields for complex 2 systems was 86.7% under the reaction conditions of 100 °C, 2.5 MPa, and 4 h. The TOF was 1026 h−1 under the reaction conditions of 200 °C, 2.5 MPa, and 1 h. We also explored the influence of time, pressure, temperature, and reaction substrate concentration on the catalytic reactions. A hypothetical catalytic reaction mechanism is proposed based on density functional theory (DFT) calculations and the catalytic reaction results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer