Abstract

Keeping in mind the concept of green chemistry, this research aims to synthesize and characterize new ionic liquids (ILs) derived from N-cinnamyl imidazole with different sizes of alkyl chains (1, 6, 8, and 10 carbon atoms), and evaluate their antibacterial activity against Skin and soft tissue infections (SSTIs) causative bacteria. The antibacterial screening was carried out by agar well diffusion and the Minimum Inhibitory Concentration (MIC) and Half Maximum Inhibitory Concentration (IC50) of the different ILs were determined by microdilution in broth, also Molecular dynamics simulations were performed to study the interaction mechanism between ILs and membranes. The MIC value in Gram-positive bacteria showed that as the hydrocarbon chain increases, the MIC value decreases with a dose-dependent effect. Furthermore, Gram-negative bacteria showed high MIC values, which were also evidenced in the antibacterial screening. The molecular dynamics showed an incorporation of the ILs with the longer chain (10 C), corresponding to a passive diffusion towards the membrane surface, for its part, the ILs with the shorter chain due to its lack of hydrophobicity was not incorporated into the bilayer. Finally, the new ILs synthesized could be an alternative for the treatment of Gram-positive bacteria causative of SSTIs.

Details

Title
Novel Alkylimidazolium Ionic Liquids as an Antibacterial Alternative to Pathogens of the Skin and Soft Tissue Infections
Author
Oscar Forero Doria  VIAFID ORCID Logo  ; Castro, Ricardo  VIAFID ORCID Logo  ; Gutierrez, Margarita; Diego Gonzalez Valenzuela; Santos, Leonardo  VIAFID ORCID Logo  ; Ramirez, David  VIAFID ORCID Logo  ; Guzman, Luis
First page
2354
Publication year
2018
Publication date
2018
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2329977847
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.