It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Quantum coherence represented by a superposition of energy eigenstates is, together with energy, an important resource for quantum technology and thermodynamics. Energy and quantum coherence however, can be complementary. The increase of energy can reduce quantum coherence and vice versa. Recently, it was realized that steady-state quantum coherence could be autonomously harnessed from a cold environment. We propose a conditional synthesis of N independent two-level systems (TLS) with partial quantum coherence obtained from an environment to one coherent system using a measurement able to increase both energy and coherence simultaneously. The measurement process acts here as a Maxwell demon synthesizing the coherent energy of individual TLS to one large coherent quantum battery. The measurement process described by POVM elements is diagonal in energy representation and, therefore, it does not project on states with quantum coherence at all. We discuss various strategies and their efficiency to reach large coherent energy of the battery. After numerical optimization and proof-of-principle tests, it opens way to feasible repeat-until-success synthesis of coherent quantum batteries from steady-state autonomous coherence.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer