It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
There is a lack of data about the long-term follow-up changes in neurometabolic profile and neuropsychological performance of HIV-positive subjects under continuous antiretroviral therapy (cART). The aim of the study was to assess changes in neurometabolic profile in chronically-infected, HIV-positive subjects during a five-year follow-up period, using multi-voxel proton magnetic resonance spectroscopy (1H-MRS). Nineteen neurologically asymptomatic, aviremic, HIV-positive subjects, underwent multi-voxel 2D MRS on a 3 T MR unit and synchronous neurocognitive assessment in a five-year follow-up period. Twelve voxels were placed in prefrontal cortices, anterior and posterior cingulate gyrus, intraparietal sulci, and frontal centrum semiovale white matter, to identify peaks of N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), and myoinositol (mI). Ratios of NAA/Cr, NAA/Cho, NAA/mI, mI/Cr, and Cho/Cr were analyzed. Longitudinal differences in ratios and neurocognitive scores were tested with the Wilcoxon signed-rank-test. Statistical significance was set at p ≤ 0.004 significant, and 0.05 > p > 0.004 trending toward significance. A significant longitudinal increase in NAA/Cr ratio was observed in 5/12 voxels, while there was a trend toward significance in an additional three. The increase in Cho/Cr reached statistical significance in one voxel. Changes in the mI/Cr ratio demonstrated a significant increase in 4/12 voxels. A progressive increase in NAA/Cr, followed by better neurocognitive performance, may be an indicator of brain plasticity in the setting of chronic HIV-related neuronal injury. A progressive mI/Cr increase could be partly explained by glial proliferation due to functional compartment remodeling and partly attributable to insufficient control of persistent neuroinflammation by cART.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of Novi Sad, Faculty of Medicine Novi Sad, Novi Sad, Serbia; Oncology Institute of Vojvodina, Center for Diagnostic Imaging, Sremska Kamenica, Serbia
2 Medical University of Vienna, Department fo Biomedical Imaging and Image-guided Therapy, Vienna, Austria
3 University of Novi Sad, Faculty of Medicine Novi Sad, Novi Sad, Serbia; Clinical Center of Vojvodina, Clinic for Infectious Diseases, Novi Sad, Serbia
4 University of Novi Sad, Faculty of Medicine Novi Sad, Novi Sad, Serbia; Medical University of Vienna, Department fo Biomedical Imaging and Image-guided Therapy, Vienna, Austria
5 University of Novi Sad, Faculty of Medicine Novi Sad, Novi Sad, Serbia; Clinical Center of Vojvodina, Clinic for Neurology, Novi Sad, Serbia