It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recent developments in proteomics have enabled signaling studies where > 10,000 phosphosites can be routinely identified and quantified. Yet, current analyses are limited in throughput, reproducibility, and robustness, hampering experiments that involve multiple perturbations, such as those needed to map kinase–substrate relationships, capture pathway crosstalks, and network inference analysis. To address these challenges, we introduce rapid‐robotic phosphoproteomics (R2‐P2), an end‐to‐end automated method that uses magnetic particles to process protein extracts to deliver mass spectrometry‐ready phosphopeptides. R2‐P2 is rapid, robust, versatile, and high‐throughput. To showcase the method, we applied it, in combination with data‐independent acquisition mass spectrometry, to study signaling dynamics in the mitogen‐activated protein kinase (
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer