Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bio-based glass-forming materials are now considered for thermal energy storage in building applications. Among them, Xylitol appears as a biosourced seasonal thermal energy storage material with high potential. It has a high energy density and a high and stable undercooling, thus allowing storing solar energy at ambient temperature and reducing thermal losses and the risk of spontaneous nucleation (i.e., the risk of losing the stored energy). Generally when the energy is needed, the discharge triggering of the storage system is very difficult as well as reaching a sufficient power delivery. Both are indeed the main obstacles for the use of pure Xylitol in seasonal energy storage. Different techniques have been hence considered to crystallize highly undercooled Xylitol. Nucleation triggering of highly undercooled pure Xylitol by using an air lift reactor has been proven here. This method should allow reaching performances matching with building applications (i.e., at medium temperatures, below 100 °C). The advantages of this technique compared to other existing techniques to activate the crystallization are discussed. The mechanisms triggering the nucleation are investigated. The air bubble generation, transportation of nucleation sites and subsequent crystallization are discussed to improve the air injection operating conditions.

Details

Title
Nucleation Triggering of Highly Undercooled Xylitol Using an Air Lift Reactor for Seasonal Thermal Energy Storage
Author
Duquesne, Marie  VIAFID ORCID Logo  ; Elena Palomo Del Barrio; Godin, Alexandre
First page
267
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2331303021
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.