Full Text

Turn on search term navigation

© 2019 Elmer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Antibody therapies for Alzheimer’s Disease (AD) hold promise but have been limited by the inability of these proteins to migrate efficiently across the blood brain barrier (BBB). Central nervous system (CNS) gene transfer by vectors like adeno-associated virus (AAV) overcome this barrier by allowing the bodies’ own cells to produce the therapeutic protein, but previous studies using this method to target amyloid-β have shown success only with truncated single chain antibodies (Abs) lacking an Fc domain. The Fc region mediates effector function and enhances antigen clearance from the brain by neonatal Fc receptor (FcRn)-mediated reverse transcytosis and is therefore desirable to include for such treatments. Here, we show that single chain Abs fused to an Fc domain retaining FcRn binding, but lacking Fc gamma receptor (FcγR) binding, termed a silent scFv-IgG, can be expressed and released into the CNS following gene transfer with AAV. While expression of canonical IgG in the brain led to signs of neurotoxicity, this modified Ab was efficiently secreted from neuronal cells and retained target specificity. Steady state levels in the brain exceeded peak levels obtained by intravenous injection of IgG. AAV-mediated expression of this scFv-IgG reduced cortical and hippocampal plaque load in a transgenic mouse model of progressive β-amyloid plaque accumulation. These findings suggest that CNS gene delivery of a silent anti-Aβ scFv-IgG was well-tolerated, durably expressed and functional in a relevant disease model, demonstrating the potential of this modality for the treatment of Alzheimer’s disease.

Details

Title
Gene delivery of a modified antibody to Aβ reduces progression of murine Alzheimer’s disease
Author
Elmer, Bradford M; Swanson, Kurt A; Bangari, Dinesh S; Piepenhagen, Peter A; Roberts, Errin; Taksir, Tatyana; Guo, Lei; Maria-Carmen Obinu; Barneoud, Pascal; Ryan, Susan; Zhang, Bailin; Pradier, Laurent; Zhi-Yong, Yang; Nabel, Gary J
First page
e0226245
Section
Research Article
Publication year
2019
Publication date
Dec 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2331420682
Copyright
© 2019 Elmer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.