Full Text

Turn on search term navigation

© 2019 Hantschel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accumulating evidence indicates that there is an interaction between the gut microbiota and endometriotic lesions. The new formation of these lesions is associated with stem cell recruitment, angiogenesis and inflammation, which may affect the composition of the gut microbiota. To test this hypothesis, we herein induced endometriotic lesions by transplantation of uterine tissue fragments from green fluorescent protein (GFP)+ donor mice into the peritoneal cavity of GFP- C57BL/6 wild-type mice. Sham-transplanted animals served as controls. Fecal pellets of the animals were collected 3 days before as well as 7 and 21 days after the induction of endometriosis to analyze the composition of the gut microbiota by means of 16S ribosomal RNA gene sequencing. The transplantation of uterine tissue fragments resulted in the establishment of endometriotic lesions in all analyzed mice. These lesions exhibited a typical histomorphology with endometrial glands surrounded by a vascularized stroma. Due to their bright GFP signal, they could be easily differentiated from the surrounding GFP- host tissue. Bacterial 16S rRNA genes were successfully PCR-amplified from the DNA extracts of all obtained mice fecal samples. However, no significant effect of endometriosis induction on the composition of the bacterial microbiota was detected with our experimental setup. Our findings allow careful speculation that endometriosis in mice does not induce pronounced dysbiosis during the acute phase of lesion formation.

Details

Title
Effect of endometriosis on the fecal bacteriota composition of mice during the acute phase of lesion formation
Author
Hantschel, Josefine; Weis, Severin; Karl-Herbert Schäfer; Menger, Michael D; Kohl, Matthias; Egert, Markus; Laschke, Matthias W
First page
e0226835
Section
Research Article
Publication year
2019
Publication date
Dec 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2331420943
Copyright
© 2019 Hantschel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.