Full Text

Turn on search term navigation

Copyright © 2019, Castelletto et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We report the enhancement of the optical emission between 850 and 1400 nm of an ensemble of silicon mono-vacancies (VSi), silicon and carbon divacancies (VCVSi), and nitrogen vacancies (NCVSi) in an n-type 4H-SiC array of micropillars. The micropillars have a length of ca. 4.5 μm and a diameter of ca. 740 nm, and were implanted with H+ ions to produce an ensemble of color centers at a depth of approximately 2 μm. The samples were in part annealed at different temperatures (750 and 900 °C) to selectively produce distinct color centers. For all these color centers we saw an enhancement of the photostable fluorescence emission of at least a factor of 6 using micro-photoluminescence systems. Using custom confocal microscopy setups, we characterized the emission of VSi measuring an enhancement by up to a factor of 20, and of NCVSi with an enhancement up to a factor of 7. The experimental results are supported by finite element method simulations. Our study provides the pathway for device design and fabrication with an integrated ultra-bright ensemble of VSi and NCVSi for in vivo imaging and sensing in the infrared.

Details

Title
Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars
Author
Castelletto Stefania; Al Atem Abdul Salam; Inam, Faraz Ahmed; von Bardeleben Hans Jürgen; Hameau Sophie; Almutairi, Ahmed Fahad; Guillot Gérard; Sato Shin-ichiro; Boretti Alberto; Bluet, Jean Marie
University/institution
U.S. National Institutes of Health/National Library of Medicine
Pages
2383-2395
Publication year
2019
Publication date
2019
Publisher
Beilstein-Institut zur Föerderung der Chemischen Wissenschaften
e-ISSN
21904286
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2331548530
Copyright
Copyright © 2019, Castelletto et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.