Full text

Turn on search term navigation

Copyright © 2019, Sansalone et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We have developed photochromic probes for the nicotinic acetylcholine receptor that exploit the unique chemical properties of the tetrafluoroazobenzene (4FAB) scaffold. Ultraviolet light switching and rapid thermal relaxation of the metastable cis configuration are the main drawbacks associated with standard AB-based switches. We designed our photoprobes to take advantage of the excellent thermodynamic stability of the cis-4FAB configuration (thermal half-life > 12 days at 37 °C in physiological buffer) and cis–trans photostationary states above 84%. Furthermore, the well-separated n–π* absorption bands of trans- and cis-4FAB allow facile photoswitching with visible light in two optical channels. A convergent 11-step synthetic approach allowed the installation of a trimethylammonium (TA) head onto the 4FAB scaffold, by means of an alkyl spacer, to afford a free diffusible 4FABTA probe. TAs are known to agonize nicotinic receptors, so 4FABTA was tested on mouse brain slices and enabled reversible receptor activation with cycles of violet and green light. Due to the very long-lived metastable cis configuration, 4FAB in vivo use could be of great promise for long term biological studies. Further chemical functionalization of this 4FAB probe with a maleimide functionality allowed clean cross-linking with glutathione. However, attempts to conjugate with a cysteine on a genetically modified nicotinic acetylcholine receptor did not afford the expected light-responsive channel. Our data indicate that the 4FAB photoswitch can be derivatized bifunctionally for genetically-targeted photopharmacology whilst preserving all the favorable photophysical properties of the parent 4FAB scaffold, however, the tetrafluoro motif can significantly perturb pharmacophore–protein interactions. In contrast, we found that the freely diffusible 4FABTA probe could be pre-set with green light into an OFF state that was biologically inert, irradiation with violet light effectively "uncaged" agonist activity, but in a photoreversible manner. Since the neurotransmitter acetylcholine has fully saturated heteroatom valences, our photoswitchable 4FABTA probe could be useful for physiological studies of this neurotransmitter.

Details

Title
Chemical tuning of photoswitchable azobenzenes: a photopharmacological case study using nicotinic transmission
Author
Sansalone Lorenzo; Zhao, Jun; Richers, Matthew T; Ellis-Davies, Graham C, R
University/institution
U.S. National Institutes of Health/National Library of Medicine
Pages
2812-2821
Publication year
2019
Publication date
2019
Publisher
Beilstein-Institut zur Föerderung der Chemischen Wissenschaften
ISSN
2195951X
e-ISSN
18605397
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2331555642
Copyright
Copyright © 2019, Sansalone et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.