It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The effect of hydrostatic pressure up to P = 1.7 GPa on the fluctuation conductivity σ′(T) and pseudogap ∆*(T) in Y0.95Pr0.05Ba2Cu3O7−δ single crystal with critical temperature Тс = 85.2 K (at P = 0) was investigated. The application of pressure leads to the increase in Tc with dTc/dP = +1.82 K∙GPa−1 while the resistance decreases as dlnρ(100 K)/dP = −(10.5 ± 0.2) %∙GPa−1. Regardless of the pressure, in the temperature interval from Tc to T0 (~88 K at P = 0) the behaviour of σ′(T) is well described by the Aslamazov – Larkin (AL – 3D) fluctuation theory, and above the T0 by the Lawrence – Doniach theory (LD). The Maki-Thompson (MT – 2D) fluctuation contribution is not observed. This indicates the presence of structural defects in the sample induced by Pr. Here it is determined for the first time that when the pressure is applied to the Y1−xPrxBa2Cu3O7−δ single crystal, the pseudogap increases as dlnΔ*/dP = 0.17 GPa–1.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 B. Verkin Institute for Low Temperature Physics and Engineering, NAN of Ukraine, 47 Nauky Avenue, Kharkiv, Ukraine
2 V. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv, Ukraine
3 Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, United Kingdom
4 Department of Materials, Imperial College, London, UK; Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry, United Kingdom