Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

All these phenomena inhibit the direct contact of the target analyte with the electrode surface for electron transfer to elicit an electrochemical response and severely affects the analytical characteristics of the corresponding (bio)sensors including sensitivity, reproducibility, stability, and overall reliability [2,3]. [...]the development of (bio)sensing interfaces that combine high sensitivity and antifouling ability by preventing byproducts, macromolecules and polymeric substrates from absorbing onto the electrode surface is essential for expanding the practical applicability of biosensors to allow reliable measurements [4,5]. Despite the attractiveness of PEG as antifouling agent, its antifouling capabilities over long-term applications is limited by the low surface densities and susceptibility to oxidative damages [7,21,22,23]. [...]grafting of long chain antifouling nonconductive polymers, such PEG, can lead to the formation of layers with high impedance and result in a decrease in the electrode sensitivity. [...]the incorporation of PEG with certain conductive soft materials such as conducting polymers has demonstrated to be helpful to address this problem and develop low fouling but highly sensitive assays [3]. The biosensor involved immobilization of specific capture DNA probe onto a glassy carbon electrode (GCE) modified with the (PANI/PEG) nanofibers, a direct hybridization assay, and differential pulse voltammetric (DPV) monitoring of the decrease in the methylene blue (MB) signal after the hybridization with the target DNA (Figure 1).

Details

Title
Antifouling (Bio)materials for Electrochemical (Bio)sensing
Author
Campuzano, Susana; Pedrero, María; Yáñez-Sedeño, Paloma; Pingarrón, José M
Publication year
2019
Publication date
2019
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2331907629
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.