It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The origin of charge density waves (CDWs) in TiSe\[{}_{2}\] has long been debated, mainly due to the difficulties in identifying the timescales of the excitonic pairing and electron–phonon coupling (EPC). Without a time-resolved and microscopic mechanism, one has to assume simultaneous appearance of CDW and periodic lattice distortions (PLD). Here, we accomplish a complete separation of ultrafast exciton and PLD dynamics and unravel their interplay in our real-time time-dependent density functional theory simulations. We find that laser pulses knock off the exciton order and induce a homogeneous bonding–antibonding transition in the initial 20 fs, then the weakened electronic order triggers ionic movements antiparallel to the original PLD. The EPC comes into play after the initial 20 fs, and the two processes mutually amplify each other leading to a complete inversion of CDW ordering. The self-amplified dynamics reproduces the evolution of band structures in agreement with photoemission experiments. Hence we resolve the key processes in the initial dynamics of CDWs that help elucidate the underlying mechanism.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China
2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China; Songshan Lake Materials Laboratory, Dongguan, Guangdong, P. R. China