Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Along with painful sensitivity to touch, a clinical diagnosis of vulvodynia often includes an increase in mast cells, local overgrowth of nerves [3], and altered inflammatory responses of vulvar tissue-derived fibroblasts to in vitro yeast antigen stimulation [4,5]. Given that clinical tests for vulvodynia [1] and associated inflammation [4,5] are conducted on the mucosal-like vulvar tissue, we adapted our protocol to apply DNFB dissolved in normal saline within the vaginal canal of mice that had been previously sensitized to DNFB on the shaved flank and measured changes in ano-genital sensitivity to touch and pressure, as well as inflammatory responses in the affected tissue. [...]we assessed the effect of therapeutic intra-vaginal applications of Δ9-tetrahydrocannabinol (THC) on the abundance of mast cells and painful sensitivity. 2. All visually detectable signs of irritation (slight redness) resolved within 2 days of cessation of DNFB challenges. Since the inflammatory effects of DNFB in more typical organic solvent vehicles have, historically, been characterized mostly in inbred mouse strains, we verified that outbred ND4 female mice sensitized on the flank and subsequently challenged on the labiar skin with DNFB dissolved in acetone showed increases in local mast cell abundance and abundances of transcripts encoding IL-6 and IFN-γ (Figure S1A–C).

Details

Title
Tetrahydrocannabinol Reduces Hapten-Driven Mast Cell Accumulation and Persistent Tactile Sensitivity in Mouse Model of Allergen-Provoked Localized Vulvodynia
Author
Boo, Beebie; Kamath, Rohit; Arriaga-Gomez, Erica; Landry, Jasmine; Emanuel, Elizabeth; Joo, Sookyong; Montivero, Marietta Saldías; Martinov, Tijana; Fife, Brian T; Chatterjea, Devavani
Publication year
2019
Publication date
2019
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2332354145
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.