Full Text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study we focus our attention to a special class of fungal AMPs, known as “peptaibols”, owing to their constituent non-standard amino acid residues like α-aminobutyric acid (Aib) and C-terminal aminoalcohols etc. In this study we focus on the use of accelerated molecular dynamics (aMD) simulations to obtain conformational ensemble and structural dynamics of alamethicin F30/3 (Alm F30/3). aMD is an enhanced sampling technique that “boosts” the system over energy barriers, thereby fastening the peptide folding process [2,3]. [23] studied Alm in a 1,2-di-O-phytanyl-sn-glycero-3-phosphocholine (DPhPC) bilayer using electrochemical impedance spectroscopy (EIS) and photon polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) to understand membrane stability and Alm conformation in the bilayer. [25] visualized the formation of Alm pores in floating phospholipid membrane on gold electrodes, which confirmed the hexamer ion channel formation with the diameter of a pore calculated to be 2.3 ± 0.3 nm.

Details

Title
Accelerated Molecular Dynamics Applied to the Peptaibol Folding Problem
Author
Tyagi, Chetna; Marik, Tamás; Vágvölgyi, Csaba; Kredics, László; Ötvös, Ferenc
Publication year
2019
Publication date
2019
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2332370229
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.