Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the development of other biomaterials, aggregate-based cements of mineral trioxides have emerged, which present higher success rates, form structurally more consistent dentin bridges, and with high antibacterial effects, they are now considered the gold standard materials for this type of therapy [1,7,8,9,10]. Additionally, it creates an antibacterial environment by increasing the pH (alkalizing the medium), modulates cytokine production, induces differentiation and migration of cells that are capable of producing dentin or bone tissue, and forms hydroxyapatite or carbonate apatite on its surface, inducing a biological sealing [11]. The evaluation of these factors included the clinical evaluation of the absence or presence of symptomatology that are compatible with inflammatory pulp states and radiographic evaluation of the structural alterations of coronary restoration that support pulp tissue repair and changes in the pulp tissue itself. Inclusion Criteria The included patients met certain criteria which were reported in the clinical chart, namely: thermal sensitivity response compatible with vital tooth diagnosis and corroboration by radiographic examination; patients aged 18 to 55; and a reasonable state of health and oral hygiene, without periodontal pathology.

Details

Title
Direct Pulp Capping: Which is the Most Effective Biomaterial? A Retrospective Clinical Study
Author
Anabela Paula; Carrilho, Eunice; Laranjo, Mafalda; Abrantes, Ana M; Casalta-Lopes, João; Maria Filomena Botelho; Carlos Miguel Marto; Ferreira, Manuel M
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2333417045
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.