It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Salinity intrusion is a pressing issue in the coastal areas worldwide. It affects the natural environment and causes massive economic loss due to its impacts on the agricultural productivity and food safety. Here, we assessed the salinity intrusion in the Tra Vinh Province, in the Mekong Delta of Vietnam. Landsat 8 OLI image was utilized to derive indices for soil salinity estimate including the single bands, Vegetation Soil Salinity Index (VSSI), Soil Adjusted Vegetation Index (SAVI), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Salinity Index (NDSI). Statistical analysis between the electrical conductivity (EC1:5, dS/m) and the environmental indices derived from Landsat 8 OLI image was performed. Results indicated that spectral values of near-infrared (NIR) band and VSSI were better correlated with EC1:5 (r2 = 0.8 and r2 = 0.7, respectively) than the other indices. Comparative results show that soil salinity derived from Landsat 8 was consistent with in situ data with coefficient of determination, R2 = 0.89 and RMSE = 0.96 dS/m for NIR band and R2 = 0.77 and RMSE = 1.27 dS/m for VSSI index. Findings of this study demonstrate that Landsat 8 OLI images reveal a high potential for spatiotemporally monitoring the magnitude of soil salinity at the top soil layer. Outcomes of this study are useful for agricultural activities, planners, and farmers by mapping the soil salinity contamination for better selection of accomodating crop types to reduce economical loss in the context of climate change. Our proposed method that estimates soil salinity using satellite-derived variables can be potentially useful as a fast-approach to detect the soil salinity in the other regions with low cost and considerable accuracy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Center for Space and Remote Sensing Research, National Central University, Taoyuan City, Taiwan, Republic of China; Institute of Geography, Vietnam Academy of Science and Technology (VAST), Hanoi City, Vietnam; Graduate University of Science and Technology, VAST, Hanoi City, Vietnam
2 Center for Space and Remote Sensing Research, National Central University, Taoyuan City, Taiwan, Republic of China
3 Ho Chi Minh City Institute of Resources Geography, VAST, Ho Chi Minh City, Vietnam
4 Graduate University of Science and Technology, VAST, Hanoi City, Vietnam; Ho Chi Minh City Space Technology Application Center, Vietnam National Space Center, VAST, Ho Chi Minh City, Vietnam
5 Representative Office of VAST in Ho Chi Minh City, Ho Chi Minh City, Vietnam