It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mesenchymal stem cell (MSC)-based therapies are under investigation for tissue repair but suffer from poor cell persistence and engraftment upon transplantation. When entrapped in an adhesive biomaterial, MSC spheroids exhibited improved survival and proangiogenic growth factor secretion in vitro and bone formation in vivo compared with cells in nonadhesive hydrogels. These findings demonstrate the value of deploying MSC spheroids in instructive biomaterials to improve cell function.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
2 Department of Biomedical Engineering, University of California, Davis, Davis, California, USA; Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, California, USA