It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background: In Gram-negative species, β-lactam antibiotics target penicillin binding proteins (PBPs) resulting in morphological alterations of bacterial cells. Observations of antibiotic-induced cell morphology changes can rapidly and accurately differentiate drug susceptible from resistant bacterial strains; however, resistant cells do not always remain unchanged. Burkholderia pseudomallei is a Gram-negative, biothreat pathogen and the causative agent of melioidosis, an often fatal infectious disease for humans. Results: Here, we identified β-lactam targets in B. pseudomallei by in silico analysis. Ten genes encoding putative PBPs, including PBP-1, PBP-2, PBP-3 and PBP-6, were detected in the genomes of susceptible and resistant strains. Real-time, live-cell imaging of B. pseudomallei strains demonstrated dynamic morphological changes in broth containing clinically relevant β-lactam antibiotics. At sub-inhibitory concentrations of ceftazidime (CAZ), amoxicillin-clavulanic acid (AMC), and imipenem (IPM), filamentation, varying in length and proportion, was an initial response of the multidrug-resistant strain Bp1651 in exponential phase. However, a dominant morphotype reemerged during stationary phase that resembled cells unexposed to antibiotics. Similar morphology dynamics were observed for AMC-resistant strains, MSHR1655 and 724644, when exposed to sub-inhibitory concentrations of AMC. For all B. pseudomallei strains evaluated, increased exposure time and exposure to increased concentrations of AMC at and above minimal inhibitory concentrations (MICs) in broth resulted in cell morphology shifts from filaments to spheroplasts and/or cell lysis. B. pseudomallei morphology changes were more consistent in IPM. Spheroplast formation followed by cell lysis was observed for all strains in broth containing IPM at concentrations greater than or equal to MICs, however, the time to cell lysis was variable. Length of B. pseudomallei cells was strain-, drug- and drug concentration-dependent. Conclusions: Both resistant and susceptible B. pseudomallei strains exhibited filamentation during early exposure to AMC and CAZ at concentrations used to interpret susceptibility (based on CLSI guidelines). While developing a rapid β-lactam antimicrobial susceptibility test based on cell-shape alone requires more extensive analyses, optical microscopy detected B. pseudomallei growth attributes that lend insight into antibiotic response and antibacterial mechanisms of action.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer