Full text

Turn on search term navigation

© 2019 Sanchez-Gorostiaga et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Understanding the link between community composition and function is a major challenge in microbial population biology, with implications for the management of natural microbiomes and the design of synthetic consortia. Specifically, it is poorly understood whether community functions can be quantitatively predicted from traits of species in monoculture. Inspired by the study of complex genetic interactions, we have examined how the amylolytic rate of combinatorial assemblages of six starch-degrading soil bacteria depend on the separate functional contributions from each species and their interactions. Filtering our results through the theory of biochemical kinetics, we show that this simple function is additive in the absence of interactions among community members. For about half of the combinatorially assembled consortia, the amylolytic function is dominated by pairwise and higher-order interactions. For the other half, the function is additive despite the presence of strong competitive interactions. We explain the mechanistic basis of these findings and propose a quantitative framework that allows us to separate the effect of behavioral and population dynamics interactions. Our results suggest that the functional robustness of a consortium to pairwise and higher-order interactions critically affects our ability to predict and bottom-up engineer ecosystem function in complex communities.

Details

Title
High-order interactions distort the functional landscape of microbial consortia
Author
Sanchez-Gorostiaga, Alicia; Osborne, Melisa L; Poyatos, Juan F; Sanchez, Alvaro
First page
e3000550
Section
Research Article
Publication year
2019
Publication date
Dec 2019
Publisher
Public Library of Science
ISSN
15449173
e-ISSN
15457885
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2339845704
Copyright
© 2019 Sanchez-Gorostiaga et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.