Abstract

Luminescence downshifting (LDS) layer integration has been proven to be an efficient way to ameliorate the poor UV-blue spectral response and improve the power conversion efficiency (PCE) for solar cells (SCs). By employing an in situ fabricated CH3NH3PbBr3 (CH3NH3 = methylammonium, MAPbBr3) quantum dot/polyacrylonitrile (PAN) composite film as the LDS layer, we observed a clear enhancement in the external quantum efficiency (EQE) for silicon SCs, predominantly in the UV-blue region. With a theoretically calculated intrinsic LDS efficiency (ηLDS) of up to 72%, silicon SCs with the LDS layer exhibited an absolute value of 1% for PCE improvement in comparison to those without the LDS layer. The combination of easy fabrication and low cost makes it a practical way to achieve photovoltaic enhancement of Si-based SCs.

Details

Title
Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials
Author
Meng, Linghai; Xian-Gang Wu; Ma, Sai; Shi, Lifu; Zhang, Mengjiao; Wang, Lingxue; Chen, Yu  VIAFID ORCID Logo  ; Chen, Qi; Zhong, Haizheng
Pages
93-100
Publication year
2020
Publication date
2020
Publisher
Walter de Gruyter GmbH
ISSN
21928606
e-ISSN
21928614
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2340268716
Copyright
© 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.