It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Studying multiple microRNAs (miRNAs) synergism in gene regulation could help to understand the regulatory mechanisms of complicated human diseases caused by miRNAs. Several existing methods have been presented to infer miRNA synergism. Most of the current methods assume that miRNAs with shared targets at the sequence level are working synergistically. However, it is unclear if miRNAs with shared targets are working in concert to regulate the targets or they individually regulate the targets at different time points or different biological processes. A standard method to test the synergistic activities is to knock-down multiple miRNAs at the same time and measure the changes in the target genes. However, this approach may not be practical as we would have too many sets of miRNAs to test.
Results
n this paper, we present a novel framework called miRsyn for inferring miRNA synergism by using a causal inference method that mimics the multiple-intervention experiments, e.g. knocking-down multiple miRNAs, with observational data. Our results show that several miRNA-miRNA pairs that have shared targets at the sequence level are not working synergistically at the expression level. Moreover, the identified miRNA synergistic network is small-world and biologically meaningful, and a number of miRNA synergistic modules are significantly enriched in breast cancer. Our further analyses also reveal that most of synergistic miRNA-miRNA pairs show the same expression patterns. The comparison results indicate that the proposed multiple-intervention causal inference method performs better than the single-intervention causal inference method in identifying miRNA synergistic network.
Conclusions
Taken together, the results imply that miRsyn is a promising framework for identifying miRNA synergism, and it could enhance the understanding of miRNA synergism in breast cancer.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer