Abstract

Background

Cotton grows in altering environments that are often unfavorable or stressful for its growth and development. Consequently, the plant must cope with abiotic stresses such as soil salinity, drought, and excessive temperatures. Alkali-salt stress response remains a cumbersome biological process and is regulated via a multifaceted transcriptional regulatory network in cotton.

Results

To discover the molecular mechanisms of alkali-salt stress response in cotton, a comprehensive transcriptome analysis was carried out after alkali-salt stress treatment in three accessions of Gossypium hirsutum with contrasting phenotype. Expression level analysis proved that alkali-salt stress response presented significant stage-specific and tissue-specific. GO enrichment analysis typically suggested that signal transduction process involved in salt-alkali stress response at SS3 and SS12 stages in leaf; carbohydrate metabolic process and oxidation-reduction process involved in SS48 stages in leaf; the oxidation-reduction process involved at all three phases in the root. The Co-expression analysis suggested a potential GhSOS3/GhCBL10-SOS2 network was involved in salt-alkali stress response. Furthermore, Salt-alkali sensitivity was increased in GhSOS3 and GhCBL10 Virus-induced Gene Silencing (VIGS) plants.

Conclusion

The findings may facilitate to elucidate the underlying mechanisms of alkali-salt stress response and provide an available resource to scrutinize the role of candidate genes and signaling pathway governing alkali-salt stress response.

Details

Title
Genetic regulatory networks for salt-alkali stress in Gossypium hirsutum with differing morphological characteristics
Author
Xu, Yanchao; Richard Odongo Magwanga; Yang, Xiu; Jin, Dingsha; Cai, Xiaoyan; Hou, Yuqing; Wei, Yangyang; Zhou, Zhongli; Wang, Kunbo; Liu, Fang
Pages
1-19
Section
Research article
Publication year
2020
Publication date
2020
Publisher
BioMed Central
e-ISSN
14712164
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2340860003
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.