Full text

Turn on search term navigation

Copyright © 2020 Wen Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

This paper presents an investigation into the nonlinear dynamic behaviors of the mechanical isolation system coupled with air-bag and floating-raft subject to basement excitation in lateral directions. First, the coupling effects between the excitation source and isolation system are considered. Also, the mechanical isolation model under basic excitation and its motion equation are deduced, and then the dynamic responses are mainly investigated by using the techniques of displacement response, frequency spectrum, rotor orbit, Poincaré maps, and the bifurcation diagram. Last, the bifurcations of the mechanical isolation system with different parameters are analyzed through numerical methods, especially the effect of excitation frequency and amplitude. The result predicts that period-5 is mainly performed, with the increase of rotor speed, and the system moves into quasi-bifurcation. However, the system stays in chaos state at high rotor speed, and the vibration amplitude rises rapidly until against bearing bush. Furthermore, the effects of basement excitation on the mechanical isolation system are mainly concentrated on the stage of lower rotor speed, but with the increasing speed, the effects become weak and at the same time the vibration amplitude reduces significantly. The points projected on the Poincaré section are five, three, or two solitary attractors, in which the system stays in periodic motion. Above all, the dynamic characteristics can provide the theoretic supporting for the dynamic, vibration control and its parametric optimization of the marine mechanical isolation system coupled with air-bag and floating-raft.

Details

Title
Nonlinear Dynamics of Marine Rotor System Coupled with Air Bag-Floating Raft Subjected to the Basement Excitations in Lateral Directions
Author
Zhao, Wen; Li, Ming  VIAFID ORCID Logo  ; Liu, Yuanbo
Editor
Angelo Marcelo Tusset
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
10709622
e-ISSN
18759203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2341421154
Copyright
Copyright © 2020 Wen Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/