Full text

Turn on search term navigation

Copyright © 2020 Jian Cui et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

There are severe challenges for slurry pressure balance tunnel boring machine (TBM) tunnelling in sandy cobble soil of Beijing, Chengdu, and Lanzhou in China. And the problems caused by tunnelling from silty clay to sandy cobble stratum are more serious. With the change of stratum, the key parameters and surface settlement will change correspondingly. Controlling the key parameters and predicting the surface settlement accurately and efficiently is important for hazard mitigation and risk management. In this study, based on the Tsinghuayuan Tunnel project in Beijing, the key parameters and surface settlement while tunnelling from silty clay to sandy cobble stratum are studied. Firstly, the difference of key parameters while tunnelling in two different strata is analyzed. The analysis shows that immediate responses to changes in the stratum are recommended in order to ensure construction efficiency. Then, a refined 3D finite difference model is developed to simulate the slurry TBM tunnelling in different strata. For refined simulation, three key parameters obtained from measurement data were applied to the 3D models, and the simulation results were compared with the field data. Results show that the refined model has good performance in terms of the accuracy and efficiency. This study provides a good engineering practice reference for slurry TBM tunnelling in mixed strata.

Details

Title
Performance of Slurry Shield Tunnelling in Mixed Strata Based on Field Measurement and Numerical Simulation
Author
Cui, Jian  VIAFID ORCID Logo  ; Wang-Hao, Xu; Fang, Yong  VIAFID ORCID Logo  ; Li-Ming, Tao  VIAFID ORCID Logo  ; He, Chuan
Editor
Carlo Santulli
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
16878434
e-ISSN
16878442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2341434590
Copyright
Copyright © 2020 Jian Cui et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/