It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Glucose and xylose are the major components of lignocellulose. Effective utilization of both sugars can improve the efficiency of bioproduction. Here, we report a method termed parallel metabolic pathway engineering (PMPE) for producing shikimate pathway derivatives from glucose–xylose co-substrate. In this method, we seek to use glucose mainly for target chemical production, and xylose for supplying essential metabolites for cell growth. Glycolysis and the pentose phosphate pathway are completely separated from the tricarboxylic acid (TCA) cycle. To recover cell growth, we introduce a xylose catabolic pathway that directly flows into the TCA cycle. As a result, we can produce 4.09 g L−1cis,cis-muconic acid using the PMPE Escherichia coli strain with high yield (0.31 g g−1 of glucose) and produce l-tyrosine with 64% of the theoretical yield. The PMPE strategy can contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources.
In lignocellulose biomass, microbes prefer consuming glucose over xylose, which affects target compound production. Here, the authors achieve simultaneous utilization of glucose and xylose for target chemical production and cell growth, respectively, and realize high-level production of shikimate pathway derivatives.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Kobe University, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe, Japan (GRID:grid.31432.37) (ISNI:0000 0001 1092 3077)
2 RIKEN, Center for Sustainable Resource Science, Yokohama, Japan (GRID:grid.7597.c) (ISNI:0000000094465255)
3 RIKEN, Center for Sustainable Resource Science, Yokohama, Japan (GRID:grid.7597.c) (ISNI:0000000094465255); Kobe University, Graduate School of Science, Technology and Innovation, Kobe, Japan (GRID:grid.31432.37) (ISNI:0000 0001 1092 3077)