Abstract

Public archives of next-generation sequencing data are growing exponentially, but the difficulty of marshaling this data has led to its underutilization by scientists. Here, we present ASCOT, a resource that uses annotation-free methods to rapidly analyze and visualize splice variants across tens of thousands of bulk and single-cell data sets in the public archive. To demonstrate the utility of ASCOT, we identify novel cell type-specific alternative exons across the nervous system and leverage ENCODE and GTEx data sets to study the unique splicing of photoreceptors. We find that PTBP1 knockdown and MSI1 and PCBP2 overexpression are sufficient to activate many photoreceptor-specific exons in HepG2 liver cancer cells. This work demonstrates how large-scale analysis of public RNA-Seq data sets can yield key insights into cell type-specific control of RNA splicing and underscores the importance of considering both annotated and unannotated splicing events.

The increasing amount of raw RNA-seq data calls for new computational methods to mine information. Here, the authors present ASCOT, a computational resource to identify splice variants in RNA-seq data, and apply it to splicing patterns in neurons and unique splicing patterns in rod photoreceptors.

Details

Title
ASCOT identifies key regulators of neuronal subtype-specific splicing
Author
Ling, Jonathan P 1   VIAFID ORCID Logo  ; Wilks, Christopher 2 ; Rone, Charles 2 ; Leavey, Patrick J 3   VIAFID ORCID Logo  ; Ghosh Devlina 3 ; Jiang Lizhi 3 ; Santiago, Clayton P 3 ; Pang, Bo 3 ; Venkataraman, Anand 3   VIAFID ORCID Logo  ; Clark, Brian S 4   VIAFID ORCID Logo  ; Nellore Abhinav 5 ; Langmead, Ben 6   VIAFID ORCID Logo  ; Blackshaw, Seth 7   VIAFID ORCID Logo 

 Johns Hopkins University, Kavli Neuroscience Discovery Institute, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) ; Johns Hopkins University, Solomon H. Snyder Department of Neuroscience, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
 Johns Hopkins University, Department of Computer Science, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) ; Johns Hopkins University, Center for Computational Biology, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
 Johns Hopkins University, Solomon H. Snyder Department of Neuroscience, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
 Washington University, John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, St. Louis, USA (GRID:grid.4367.6) (ISNI:0000 0001 2355 7002) 
 Oregon Health and Science University, Department of Biomedical Engineering, Portland, USA (GRID:grid.5288.7) (ISNI:0000 0000 9758 5690) ; Oregon Health and Science University, Department of Surgery, Portland, USA (GRID:grid.5288.7) (ISNI:0000 0000 9758 5690) ; Oregon Health and Science University, Computational Biology Program, Portland, USA (GRID:grid.5288.7) (ISNI:0000 0000 9758 5690) 
 Johns Hopkins University, Kavli Neuroscience Discovery Institute, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) ; Johns Hopkins University, Department of Computer Science, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) ; Johns Hopkins University, Center for Computational Biology, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
 Johns Hopkins University, Kavli Neuroscience Discovery Institute, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) ; Johns Hopkins University, Solomon H. Snyder Department of Neuroscience, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) ; Johns Hopkins University School of Medicine, Department of Ophthalmology, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) ; Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) ; Johns Hopkins University School of Medicine, Center for Human Systems Biology, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) ; Johns Hopkins University School of Medicine, Institute for Cell Engineering, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2342960388
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.