Full Text

Turn on search term navigation

© 2020 Gera et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

GBA mutation carriers with PD (PD-GBA) are at higher risk of cognitive decline, but there is limited data regarding whether there are differences in gait dysfunction between GBA mutation and non-mutation carriers with PD.

Objectives/Methods

The primary aim of this study was to use quantitative inertial sensor-based gait analysis to compare gait asymmetry in 17 PD-GBA subjects, 17 non-mutation carriers with PD, and 15 healthy control subjects using parameters that had gait laterality and were markers of bradykinesia, in particular arm swing velocity and arm swing range of motion and stride length.

Results

Arm swing velocity was more symmetric in PD-GBA subjects vs. non-mutation carriers in the OFF state (12.5 +/- 8.3 vs. 22.9 +/- 11.8%, respectively, p = 0.018). In the ON-medication state, non-mutation carriers with PD, but not PD-GBA subjects, exhibited arm swing velocity (16.8 +/- 8.6 vs. 22.9 +/- 11.8%, p = 0.006) and arm range of motion (26.7 +/- 16.3 vs. 33.4 +/- 18.6%, p = 0.02) that was more asymmetric compared with the OFF-medication state.

Conclusions

In the OFF medication state, arm swing velocity asymmetry may be a useful parameter in helping to distinguish GBA mutation carriers with PD from non-mutation carriers.

Details

Title
Gait asymmetry in glucocerebrosidase mutation carriers with Parkinson’s disease
Author
Gera, Anjali; Joan A O’Keefe; Ouyang, Bichun; Liu, Yuanqing; Ruehl, Samantha; Buder, Mark; Joyce, Jessica; Purcell, Nicolette; Pal, Gian
First page
e0226494
Section
Research Article
Publication year
2020
Publication date
Jan 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2344544997
Copyright
© 2020 Gera et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.