It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Trojan Horse Method is applied to the investigation of the 18F(p,α)15O reaction, by extracting the quasi free contribution to the 2H(18F,α15O)n process. For the first time the method is applied to a reaction of astrophysical importance involving a radioactive nucleus. After investigating the reaction mechanism populating the a + 15O + n exit channel, we could extract the 18F(p,α)15O cross section and calculate the astrophysical factor over the 0 – 1 MeV energy interval. The possibility of exploring the cross section with no need of extrapolation allowed us to to point out the possible occurrence of a 7/2+ state at 126 keV, which would strongly influence the trend of the astrophysical factor at the energies of astrophysical interest. However, the low energy resolution prevents us to draw definite conclusions. Possible astrophysical consequences are also discussed, motivating further work on this reaction.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer