It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A disturbance of reactive oxygen species (ROS) homeostasis may cause the pathogenesis of many diseases. Inspired by natural photosynthesis, this work proposes a photo-driven H2-evolving liposomal nanoplatform (Lip NP) that comprises an upconversion nanoparticle (UCNP) that is conjugated with gold nanoparticles (AuNPs) via a ROS-responsive linker, which is encapsulated inside the liposomal system in which the lipid bilayer embeds chlorophyll a (Chla). The UCNP functions as a transducer, converting NIR light into upconversion luminescence for simultaneous imaging and therapy in situ. Functioning as light-harvesting antennas, AuNPs are used to detect the local concentration of ROS for FRET biosensing, while the Chla activates the photosynthesis of H2 gas to scavenge local excess ROS. The results thus obtained indicate the potential of using the Lip NPs in the analysis of biological tissues, restoring their ROS homeostasis, possibly preventing the initiation and progression of diseases.
Hydrogen can be used to reduce the concentration of reactive oxygen species (ROS), but its delivery to diseased tissues is challenging due to its low solubility. Here the authors develop a photosynthesis-inspired FRET nanocomplex to detect and scavenge local excess of ROS in the tissue using photocatalytic hydrogen production.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 National Tsing Hua University, Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, Hsinchu, Taiwan, ROC (GRID:grid.38348.34) (ISNI:0000 0004 0532 0580)
2 National Tsing Hua University, Department of Materials Science and Engineering, Hsinchu, Taiwan, ROC (GRID:grid.38348.34) (ISNI:0000 0004 0532 0580)
3 Tzu Chi University, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Hualien, Taiwan, ROC (GRID:grid.411824.a) (ISNI:0000 0004 0622 7222)