Abstract

Graphene, the first true two-dimensional material, still reveals the most remarkable transport properties among the growing class of two-dimensional materials. Although many studies have investigated fundamental scattering processes, the surprisingly large variation in the experimentally determined resistances is still an open issue. Here, we quantitatively investigate local transport properties of graphene prepared by polymer assisted sublimation growth using scanning tunneling potentiometry. These samples exhibit a spatially homogeneous current density, which allows to analyze variations in the local electrochemical potential with high precision. We utilize this possibility by examining the local sheet resistance finding a significant variation of up to 270% at low temperatures. We identify a correlation of the sheet resistance with the stacking sequence of the 6H silicon carbide substrate and with the distance between the graphene and the substrate. Our results experimentally quantify the impact of the graphene-substrate interaction on the local transport properties of graphene.

Measurement of charge transport in epitaxial graphene is challenging. Here, the authors quantitatively investigate local transport properties of graphene prepared by polymer assisted sublimation growth using scanning tunneling potentiometry and report local sheet resistances with a variation of up to 270% at low temperatures.

Details

Title
Substrate induced nanoscale resistance variation in epitaxial graphene
Author
Sinterhauf Anna 1   VIAFID ORCID Logo  ; Traeger, Georg A 1   VIAFID ORCID Logo  ; Momeni, Pakdehi Davood 2 ; Schädlich, Philip 3   VIAFID ORCID Logo  ; Willke, Philip 4   VIAFID ORCID Logo  ; Speck Florian 3 ; Seyller, Thomas 3   VIAFID ORCID Logo  ; Tegenkamp Christoph 5   VIAFID ORCID Logo  ; Pierz Klaus 2   VIAFID ORCID Logo  ; Schumacher, Hans Werner 2 ; Wenderoth, Martin 1   VIAFID ORCID Logo 

 Georg-August-Universität Göttingen, IV. Physikalisches Institut, Göttingen, Germany (GRID:grid.7450.6) (ISNI:0000 0001 2364 4210) 
 Physikalisch-Technische Bundesanstalt, Braunschweig, Germany (GRID:grid.4764.1) (ISNI:0000 0001 2186 1887) 
 Technische Universität Chemnitz, Institut für Physik, Chemnitz, Germany (GRID:grid.6810.f) (ISNI:0000 0001 2294 5505); Technische Universität Chemnitz, Zentrum für Materialien, Architekturen und Integration von Nanomembranen (MAIN), Chemnitz, Germany (GRID:grid.6810.f) (ISNI:0000 0001 2294 5505) 
 Institute for Basic Science (IBS), Center for Quantum Nanoscience, Seoul, Republic of Korea (GRID:grid.410720.0) (ISNI:0000 0004 1784 4496); Ewha Womans University, Seoul, Republic of Korea (GRID:grid.255649.9) (ISNI:0000 0001 2171 7754) 
 Technische Universität Chemnitz, Institut für Physik, Chemnitz, Germany (GRID:grid.6810.f) (ISNI:0000 0001 2294 5505) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2348112481
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.