Full text

Turn on search term navigation

© 2020 Tandingan De Ley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Theba pisana is a serious snail pest in many parts of the world and affects diverse crops including grain, vegetables, grapevines, and ornamental plants and shrubs. Due to its gregarious nature, ability to reproduce rapidly, and the difficulty of controlling it by conventional methods, it has the potential to become a significant pest where introduced. Mitigating this pest is an important challenge that must be addressed. Phasmarhabditis hermaphrodita, is a gastropod-killing nematode that is commercially available only in Europe (Nemaslug ®) and Sub-Saharan Africa (Slugtech ® SP). The use of effective gastropod-killing nematodes in the genus Phasmarhabditis (P. hermaphrodita, P. californica and P. papillosa) in California may provide one strategy for alleviating the potential damage and further spread of these snails, which are currently limited to San Diego and Los Angeles counties. Laboratory assays demonstrated for the first time that US isolates of P. hermaphrodita, P. californica and P. papillosa at 150 DJs/cm2 caused significant mortality and are equally lethal to T. pisana. Molluscicidal efficacy of these nematodes are comparable with those of iron phosphate, at the recommended high dose of 4.88 kg/m2. Additional trials are needed to determine their effects at lower dose and whether they are dependent on the size or age of the snails.

Details

Title
Mortality of the invasive white garden snail Theba pisana exposed to three US isolates of Phasmarhabditis spp (P. hermaphrodita, P. californica, and P. papillosa)
Author
Irma Tandingan De Ley; Schurkman, Jacob; Wilen, Cheryl; Dillman, Adler R
First page
e0228244
Section
Research Article
Publication year
2020
Publication date
Jan 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2348305062
Copyright
© 2020 Tandingan De Ley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.