It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Fasting glucose and fasting insulin are glycemic traits closely related to diabetes, and understanding the role of genetic factors in these traits can help reveal the etiology of type 2 diabetes. Although single nucleotide polymorphisms (SNPs) in several candidate genes have been found to be associated with fasting glucose and fasting insulin, copy number variations (CNVs), which have been reported to be associated with several complex traits, have not been reported for association with these two traits. We aimed to identify CNVs associated with fasting glucose and fasting insulin.
Results
We conducted a genome-wide CNV association analysis for fasting plasma glucose (FPG) and fasting plasma insulin (FPI) using a family-based genome-wide association study sample from a Han Chinese population in Taiwan. A family-based CNV association test was developed in this study to identify common CNVs (i.e., CNVs with frequencies ≥ 5%), and a generalized estimating equation approach was used to test the associations between the traits and counts of global rare CNVs (i.e., CNVs with frequencies <5%). We found a significant genome-wide association for common deletions with a frequency of 5.2% in the Scm-like with four mbt domains 1 (SFMBT1) gene with FPG (association p-value = 2×10−4 and an adjusted p-value = 0.0478 for multiple testing). No significant association was observed between global rare CNVs and FPG or FPI. The deletions in 20 individuals with DNA samples available were successfully validated using PCR-based amplification. The association of the deletions in SFMBT1 with FPG was further evaluated using an independent population-based replication sample obtained from the Taiwan Biobank. An association p-value of 0.065, which was close to the significance level of 0.05, for FPG was obtained by testing 9 individuals with CNVs in the SFMBT1 gene region and 11,692 individuals with normal copies in the replication cohort.
Conclusions
Previous studies have found that SNPs in SFMBT1 are associated with blood pressure and serum urate concentration, suggesting that SFMBT1 may have functional implications in some metabolic-related traits.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer