It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Microsporidia are highly specialized, parasitic fungi that infect a wide range of eukaryotic hosts from all major taxa. Infections cause a variety of damaging effects on host physiology from increased stress to death. The microsporidian Facilispora margolisi infects the Pacific salmon louse (Lepeophtheirus salmonis oncorhynchi), an economically and ecologically important ectoparasitic copepod that can impact wild and cultured salmonids.
Results
Vertical transmission of F. margolisi was demonstrated by using PCR and in situ hybridization to identify and localize microsporidia in female L. salmonis and their offspring. Spores and developmental structures of F. margolisi were identified in 77% of F1 generation copepods derived from infected females while offspring from uninfected females all tested negative for the microsporidia. The transcriptomic response of the salmon louse to F. margolisi was profiled at both the copepodid larval stage and the pre-adult stage using microarray technology. Infected copepodids differentially expressed 577 transcripts related to stress, ATP generation and structural components of muscle and cuticle. The infection also impacted the response of the copepodid to the parasiticide emamectin benzoate (EMB) at a low dose of 1.0 ppb for 24 h. A set of 48 transcripts putatively involved in feeding and host immunomodulation were up to 8-fold underexpressed in the F. margolisi infected copepodids treated with EMB compared with controls or either stressor alone. Additionally, these infected lice treated with EMB also overexpressed 101 transcripts involved in stress resistance and signalling compared to the other groups. In contrast, infected pre-adult lice did not display a stress response, suggesting a decrease in microsporidian virulence associated with lice maturity. Furthermore, copepodid infectivity and moulting was not affected by the microsporidian infection.
Conclusions
This study demonstrated that F. margolisi is transmitted vertically between salmon louse generations and that biological impacts of infection differ depending on the stage of the copepod host. The infection caused significant perturbations of larval transcriptomes and therefore must be considered in future studies in which impacts to host development and environmental factors are assessed. Fitness impacts are probably minor, although the interaction between pesticide exposure and microsporidian infection merits further study.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer