It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Staphylococcus aureus is a metabolically versatile pathogen that colonizes nearly all organs of the human body. A detailed and comprehensive knowledge of staphylococcal metabolism is essential to understand its pathogenesis. To this end, we have reconstructed and experimentally validated an updated and enhanced genome-scale metabolic model of S. aureus USA300_FPR3757. The model combined genome annotation data, reaction stoichiometry, and regulation information from biochemical databases and previous strain-specific models. Reactions in the model were checked and fixed to ensure chemical balance and thermodynamic consistency. To further refine the model, growth assessment of 1920 nonessential mutants from the Nebraska Transposon Mutant Library was performed, and metabolite excretion profiles of important mutants in carbon and nitrogen metabolism were determined. The growth and no-growth inconsistencies between the model predictions and in vivo essentiality data were resolved using extensive manual curation based on optimization-based reconciliation algorithms. Upon intensive curation and refinements, the model contains 863 metabolic genes, 1379 metabolites (including 1159 unique metabolites), and 1545 reactions including transport and exchange reactions. To improve the accuracy and predictability of the model to environmental changes, condition-specific regulation information curated from the existing knowledgebase was incorporated. These critical additions improved the model performance significantly in capturing gene essentiality, substrate utilization, and metabolite production capabilities and increased the ability to generate model-based discoveries of therapeutic significance. Use of this highly curated model will enhance the functional utility of omics data, and therefore, serve as a resource to support future investigations of S. aureus and to augment staphylococcal research worldwide.
Systems Biology: Integrated study of Staphylococcus aureus metabolism
Integration of in vivo experiment with a newly developed model of Staphylococcus aureus metabolism helps explore its metabolic versatility. A multidisciplinary team led by Rajib Saha at the University of Nebraska developed a new genome-scale metabolic model of the multi-drug resistant pathogen S. aureus by combining genome annotation data, reaction stoichiometry, and condition- and mutant-specific regulations from biochemical databases and previous strain-specific models. Extensive manual curation and incorporation of newly generated experimental data on growth and metabolite production improved the accuracy and predictability of the model and increased its ability to generate model-based discoveries of therapeutic significance. Use of this highly curated model will enhance the functional utility of omics data and, therefore, serve as a resource to support future investigations of S. aureus and to augment staphylococcal research worldwide.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 University of Nebraska-Lincoln, Department of Chemical and Biomolecular Engineering, Lincoln, USA (GRID:grid.24434.35) (ISNI:0000 0004 1937 0060)
2 University of Nebraska Medical Center, Center for Staphylococcal Research, Department of Pathology and Microbiology, Omaha, USA (GRID:grid.266813.8) (ISNI:0000 0001 0666 4105)