Abstract

Bordetella pertussis, the causative agent of whopping cough, produces an adenylate cyclase toxin (CyaA) that plays a key role in the host colonization by targeting innate immune cells which express CD11b/CD18, the cellular receptor of CyaA. CyaA is also able to invade non-phagocytic cells, via a unique entry pathway consisting in a direct translocation of its catalytic domain across the cytoplasmic membrane of the cells. Within the cells, CyaA is activated by calmodulin to produce high levels of cyclic adenosine monophosphate (cAMP) and alter cellular physiology. In this study, we explored the effects of CyaA toxin on the cellular and molecular structure remodeling of A549 alveolar epithelial cells. Using classical imaging techniques, biochemical and functional tests, as well as advanced cell mechanics method, we quantify the structural and functional consequences of the massive increase of intracellular cyclic AMP induced by the toxin: cell shape rounding associated to adhesion weakening process, actin structure remodeling for the cortical and dense components, increase in cytoskeleton stiffness, and inhibition of migration and repair. We also show that, at the low concentrations that may be found in vivo during B. pertussis infection, CyaA impairs the migration and wound healing capacities of the intoxicated alveolar epithelial cells. Our results suggest that the CyaA, beyond its major role in disabling innate immune cells, might also contribute to the local alteration of the epithelial barrier of the respiratory tract, that is an hallmark of pertussis.

Details

Title
Functional and structural consequences of epithelial cell invasion by Bordetella pertussis adenylate cyclase toxin
Author
Angely, Christelle; Ladant, Daniel; Planus, Emmanuelle; Bruno, Louis; Filoche, Marcel; Chenal, Alexandre; Isabey, Daniel
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2020
Publication date
Feb 1, 2020
Publisher
Cold Spring Harbor Laboratory Press
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
ProQuest document ID
2349446069
Copyright
© 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.