It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Bordetella pertussis, the causative agent of whopping cough, produces an adenylate cyclase toxin (CyaA) that plays a key role in the host colonization by targeting innate immune cells which express CD11b/CD18, the cellular receptor of CyaA. CyaA is also able to invade non-phagocytic cells, via a unique entry pathway consisting in a direct translocation of its catalytic domain across the cytoplasmic membrane of the cells. Within the cells, CyaA is activated by calmodulin to produce high levels of cyclic adenosine monophosphate (cAMP) and alter cellular physiology. In this study, we explored the effects of CyaA toxin on the cellular and molecular structure remodeling of A549 alveolar epithelial cells. Using classical imaging techniques, biochemical and functional tests, as well as advanced cell mechanics method, we quantify the structural and functional consequences of the massive increase of intracellular cyclic AMP induced by the toxin: cell shape rounding associated to adhesion weakening process, actin structure remodeling for the cortical and dense components, increase in cytoskeleton stiffness, and inhibition of migration and repair. We also show that, at the low concentrations that may be found in vivo during B. pertussis infection, CyaA impairs the migration and wound healing capacities of the intoxicated alveolar epithelial cells. Our results suggest that the CyaA, beyond its major role in disabling innate immune cells, might also contribute to the local alteration of the epithelial barrier of the respiratory tract, that is an hallmark of pertussis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer