It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In order to understand the confining decoupling solution of the Yang–Mills theory in the Landau gauge, we consider the massive Yang–Mills model which is defined by just adding a gluon mass term to the Yang–Mills theory with the Lorentz-covariant gauge fixing term and the associated Faddeev–Popov ghost term. First of all, we show that massive Yang–Mills model is obtained as a gauge-fixed version of the gauge-invariantly extended theory which is identified with the gauge-scalar model with a single fixed-modulus scalar field in the fundamental representation of the gauge group. This equivalence is obtained through the gauge-independent description of the Brout–Englert–Higgs mechanism proposed recently by one of the authors. Then, we reconfirm that the Euclidean gluon and ghost propagators in the Landau gauge obtained by numerical simulations on the lattice are reproduced with good accuracy from the massive Yang–Mills model by taking into account one-loop quantum corrections. Moreover, we demonstrate in a numerical way that the Schwinger function calculated from the gluon propagator in the Euclidean region exhibits violation of the reflection positivity at the physical point of the parameters. In addition, we perform the analytic continuation of the gluon propagator from the Euclidean region to the complex momentum plane towards the Minkowski region. We give an analytical proof that the reflection positivity is violated for any choice of the parameters in the massive Yang–Mills model, due to the existence of a pair of complex conjugate poles and the negativity of the spectral function for the gluon propagator to one-loop order. The complex structure of the propagator enables us to explain why the gluon propagator in the Euclidean region is well described by the Gribov–Stingl form. We try to understand these results in light of the Fradkin–Shenker continuity between confinement-like and Higgs-like regions in a single confinement phase in the complementary gauge-scalar model.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Chiba University, Department of Physics, Graduate School of Science, Chiba, Japan (GRID:grid.136304.3) (ISNI:0000 0004 0370 1101); Chiba University, Department of Physics, Graduate School of Science and Engineering, Chiba, Japan (GRID:grid.136304.3) (ISNI:0000 0004 0370 1101)
2 Chiba University, Department of Physics, Graduate School of Science and Engineering, Chiba, Japan (GRID:grid.136304.3) (ISNI:0000 0004 0370 1101)
3 Chiba University, Department of Physics, Graduate School of Science, Chiba, Japan (GRID:grid.136304.3) (ISNI:0000 0004 0370 1101)