It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Chronic stress leads to disruptions in learning and memory processes. The effects of chronic stress experience on the adult zebrafish brain, particularly the memory associated telencephalon brain region, is unclear. The goal of this study was to identify gene expression changes in the adult zebrafish brain triggered by chronic unpredictable stress. Transcriptome analysis of the telencephalon revealed 155 differentially expressed genes. Of these genes, some are critical genes involved in learning and memory, such as cdk5 and chrna7, indicating effects of chronic unpredictable stress on zebrafish memory. Interestingly, several genes were annotated in the Orange domain, which is an amino acid sequence present in eukaryotic DNA-binding transcription repressors. Furthermore, we identified hsd11b2, a cortisol inactivating gene, as chronic stress-responsive in the whole zebrafish brain. Collectively, these findings suggest that memory associated gene expression changes in adult zebrafish telencephalon are affected by chronic stress experience.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Alabama at Birmingham, Department of Neurobiology, Birmingham, USA (GRID:grid.265892.2) (ISNI:0000000106344187)