It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Context: Polyphenols and flavonoids in artichoke leaf tincture (ALT) protect cells against oxidative damage.
Objectives: We examined ALT effects on deoxyribonucleic acid (DNA) damage and lipid profiles in rat plasma and gene expression in rat aorta [haemeoxygenase-1 (HO1), haemeoxygenase-2 (HO2), NADPH oxidase 4 (NOX-4), monocyte chemoattractant protein-1 (MCP-1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)].
Materials and methods: Eighteen male Wistar albino rats were divided into three groups (n = 6/group): The control group (CG) was fed with standard pellet chow for 11 weeks; the AD group was fed for a similar period of time with pellet chow supplemented with 2% cholesterol, 3% sunflower oil and 1% sodium cholate. The ADA group was fed with pellet chow (for 1 week), the atherogenic diet (see above) for the following 4 weeks and then with ALT (0.1 mL/kg body weight) and atherogenic diet for 6 weeks. According to HPLC analysis, the isolated main compounds in ALT were chlorogenic acid, caffeic acid, isoquercitrin and rutin.
Results: Normalized HO-1 [0.11 (0.04–0.24)] and MCP-1 [0.29 (0.21–0.47)] mRNA levels and DNA scores [12.50 (4.50–36.50)] were significantly lower in the ADA group than in the AD group [0.84 (0.35–2.51)], p = 0.021 for HO-1 [0.85 (0.61–3.45)], p = 0.047 for MCP-1 and [176.5 (66.50–221.25)], p = 0.020 for DNA scores. HO-1 mRNA was lower in the ADA group than in the CG group [0.30 (0.21–0.71), p = 0.049].
Conclusions: Supplementation with ALT limited the effects of the atherogenic diet through reduced MCP-1 expression, thereby preventing oxidative damage.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia;
2 Department of Clinical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia;
3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia;
4 Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia