Abstract

We examine the perturbation update step of the ensemble Kalman filters which rely on covariance localisation, and hence have the ability to assimilate non-local observations in geophysical models. We show that the updated perturbations of these ensemble filters are not to be identified with the main empirical orthogonal functions of the analysis covariance matrix, in contrast with the updated perturbations of the local ensemble transform Kalman filter (LETKF). Building on that evidence, we propose a new scheme to update the perturbations of a local ensemble square root Kalman filter (LEnSRF) with the goal to minimise the discrepancy between the analysis covariances and the sample covariances regularised by covariance localisation. The scheme has the potential to be more consistent and to generate updated members closer to the model’s attractor (showing fewer imbalances). We show how to solve the corresponding optimisation problem and discuss its numerical complexity. The qualitative properties of the perturbations generated from this new scheme are illustrated using a simple one-dimensional covariance model. Moreover, we demonstrate on the discrete Lorenz–96 and continuous Kuramoto–Sivashinsky one-dimensional low-order models that the new scheme requires significantly less, and possibly none, multiplicative inflation needed to counteract imbalance, compared to the LETKF and the LEnSRF without the new scheme. Finally, we notice a gain in accuracy of the new LEnSRF as measured by the analysis and forecast root mean square errors, despite using well-tuned configurations where such gain is very difficult to obtain.

Details

Title
On the consistency of the local ensemble square root Kalman filter perturbation update
Author
Bocquet, Marc 1 ; Farchi, Alban 1 

 CEREA, Joint laboratory École des Ponts ParisTech and EDF R&D, Université Paris-Est, Champs-sur-Marne, France 
Publication year
2019
Publication date
Dec 2019
Publisher
Ubiquity Press
e-ISSN
16000870
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2351041865
Copyright
© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons  Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.