It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We examine the perturbation update step of the ensemble Kalman filters which rely on covariance localisation, and hence have the ability to assimilate non-local observations in geophysical models. We show that the updated perturbations of these ensemble filters are not to be identified with the main empirical orthogonal functions of the analysis covariance matrix, in contrast with the updated perturbations of the local ensemble transform Kalman filter (LETKF). Building on that evidence, we propose a new scheme to update the perturbations of a local ensemble square root Kalman filter (LEnSRF) with the goal to minimise the discrepancy between the analysis covariances and the sample covariances regularised by covariance localisation. The scheme has the potential to be more consistent and to generate updated members closer to the model’s attractor (showing fewer imbalances). We show how to solve the corresponding optimisation problem and discuss its numerical complexity. The qualitative properties of the perturbations generated from this new scheme are illustrated using a simple one-dimensional covariance model. Moreover, we demonstrate on the discrete Lorenz–96 and continuous Kuramoto–Sivashinsky one-dimensional low-order models that the new scheme requires significantly less, and possibly none, multiplicative inflation needed to counteract imbalance, compared to the LETKF and the LEnSRF without the new scheme. Finally, we notice a gain in accuracy of the new LEnSRF as measured by the analysis and forecast root mean square errors, despite using well-tuned configurations where such gain is very difficult to obtain.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 CEREA, Joint laboratory École des Ponts ParisTech and EDF R&D, Université Paris-Est, Champs-sur-Marne, France