It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Rice (Oryza sativa L.) is generally sensitive to low temperatures, and in production systems that use direct-seeding, low-temperature germinability (LTG) is a desired trait. Previously, the QTLs, qLTG1 and qLTG3, that control LTG, were mapped using the BC4F8 population, which is a cross of Korean elite cultivar Hwaseong and O. rufipogon (IRGC 105491). We have characterized and analyzed the interaction between the two QTLs, by crossing TR20 that has O. rufipogon alleles at qLTG1 and qLTG3 in a Hwaseong background, with Hwaseong, to develop an F2 population.
Results
The F2 plants with both qLTG1 and qLTG3 alleles from O. rufipogon showed higher LTG scores, than the plants with only qLTG1 or qLTG3. No significant interaction between the qLTG1 and qLTG3 was observed, indicating that they may regulate LTG via different pathways. Based on its location, qLTG3 appears to be allelic with qLTG3–1, a major QTL known to control LTG. To investigate the genetic differences between the two parents, that were controlling LTG, we compared their qLTG3–1 sequences. In the coding region, three sequence variations leading to amino acid changes were identified between the Hwaseong and O. rufipogon. Of these, a non-synonymous substitution at the 62nd amino acid site, had not previously been reported. To understand the cause of the LTG variations between the parents, we genotyped three sequence variations of qLTG3–1, that were identified in 98 Asian cultivated rice accessions (Oryza sativa L.). The 98 accessions were classified into 5 haplotypes, based on three variations and a 71-bp deletion. Mean low-temperature germination rates were compared among the haplotypes, and haplotype 5 (O. rufipogon-type) showed a significantly higher germination rate than haplotype 2 (Nipponbare-type), and haplotype 3 (Italica Livorno-type).
Conclusions
The O. rufipogon qLTG3–1 allele can be utilized for the improvement of LTG in rice breeding programs. Nearly isogenic lines harboring both qLTG1 and qLTG3–1 alleles from O. rufipogon, showed higher LTG scores than the NILs with qLTG1 or qLTG3–1 alone, and the two QTLs regulate LTG via different pathways. To our knowledge, this is the first report to detect a new qLTG3–1 allele and analyze the interaction of the two LTG QTLs in a nearly isogenic background.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Chungnam National University, Department of Agronomy, Daejeon, South Korea (GRID:grid.254230.2) (ISNI:0000 0001 0722 6377)
2 Kongju National University, Department of Plant Resources, College of Industrial Science, Yesan, South Korea (GRID:grid.411118.c) (ISNI:0000 0004 0647 1065)