It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Introduction
Climate change will either improve, reduce, or shift its appropriate climatic habitat of a particular species, which could result in shifts from its geographical range. Predicting the potential distribution through MaxEnt modeling has been developed as an appropriate tool for assessing habitat distribution and resource conservation to protect bamboo species.
Methods
Our objective is to model the current and future distribution of Oxytenanthera abyssinica (A. Richard) based on three representative concentration pathways (RCP) (RCP2.6, RCP4.5, and RCP8.5) for 2050s and 2070s using a maximum entropy model (MaxEnt) in Northern Ethiopia. For modeling procedure, 77 occurrence records and 11 variables were retained to simulate the current and future distributions of Oxytenanthera abyssinica in Northern Ethiopia. To evaluate the performance of the model, the area under the receiver operating characteristic (ROC) curve (AUC) was used.
Results
All of the AUCs (area under curves) were greater than 0.900, thereby placing these models in the “excellent” category. The jackknife test also showed that precipitation of the coldest quarter (Bio19) and precipitation of the warmest quarter (Bio18) contributed 66.8% and 54.7% to the model. From the area of current distribution, 1367.51 km2 (2.52%), 7226.28 km2 (13.29%), and 5377.26 km2 (9.89%) of the study area were recognized as high, good, and moderate potential habitats of Oxytenanthera abyssinica in Northern Ethiopia, and the high potential area was mainly concentrated in Tanqua Abergele (0.70%), Kola Temben (0.65%), Tselemti (0.60%), and Tsegede (0.31%). Kafta Humera was also the largest good potential area, which accounts for 2.75%. Compared to the current distribution, the total area of the high potential regions and good potential regions for Oxytenanthera abyssinica under the three RCPs (RCP2.6, RCP4.5, and RCP8.5) would increase in the 2050s and 2070s. However, the total area of the least potential regions under the three RCPs (RCP2.6, RCP4.5, and RCP8.5) in 2050s and 2070s would decrease.
Conclusion
This study can provide vital information for the protection, management, and sustainable use of Oxytenanthera abyssinica, the resource to address the global climate challenges.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Tigray Agricultural Research Institute (TARI), Mekelle Agricultural Research Center (MARC), Tigray, Ethiopia
2 Tigray Agricultural Research Institute (TARI), Mekelle Soil Research Center (MSRC), Tigray, Ethiopia
3 Tigray Agricultural Research Institute (TARI), Shire-Mytsebri Agricultural Research Center (SmARC), Tigray, Ethiopia
4 Tigray Agricultural Research Institute (TARI), Humera Agricultural Research Center (HuARC), Tigray, Ethiopia
5 Tigray Agricultural Research Institute (TARI), Abergele Agricultural Research Center (AARC), Tigray, Ethiopia