It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study takes Guangxi Huixian National Wetland Park as the research area, and uses the UAV image and ground measured tag data as the data source. The SegNet model is used to extract the wetland vegetation information in the study area, further verification multiple classification SegNet model and fusion multiple SegNet model of single/double classification precision of the two ways of extracting karst wetland vegetation information. The experimental results show that the Kappa coefficient of the multi-segmented SegNet model is 0.68, while the multi-class SegNet model has a classification effect of 0.59. The classification effect of the karst wetland vegetation information extracted by multiple single/double-class SegNet models is more than the multi-classification. The SegNet model has high precision.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Guilin University of Technology, 541006, Guangxi, China