It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Aiming at the problem of disconnection after road classification of remote sensing image, this paper proposes an optimization method for broken road connection considering spatial connectivity. The method extracts the road skeleton based on the binarized image after road extraction, and uses the eight neighborhood detection algorithm to find the road breakpoints after road extraction of high-resolution remote sensing image, and removes the isolated points of the road edge according to mathematical morphology filtering. Secondly, use K-means clustering algorithm to search for road breakpoints, and eliminate invalid breakpoints; then, fit the breakpoints of each category through polynomial curves, and record the mathematics of each fitted curve expression; Finally, the coordinate sequences between each kind of breakpoint is calculated according to each fitted polynomial, and the corresponding pixel is filled with the width of the road to realize automatic detection and connection. In this paper, the images after road extraction based on the U-Net network is used to test the method. The results show that the proposed method can better connect the roads formed by road or building shadows. Especially, the single broken road , has a high integrity of the road shape after repairing. The method proposed in this paper has certain reference significance for the classification and repair of linear objects such as roads, power grids and tracks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
2 School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
3 Huizhou Daya Bay Economic and Technological Development Zone Land and Resources Surveying and Mapping, Huizhou 516081, China